EFFECT OF FEEDING *HELIANTHUS TUBEROSUS* (*JERUSALEM ARTICHOKE*) ON RATIONS NUTRITIVE VALUE AND SOME BLOOD PARAMETERS OF OSSIMI RAMS

A.M. Abd El-Mola and G.E. Aboul-Fotouh

Animal Production Department, Faculty of Agriculture, Fayoum University, Egypt.

(Received 24/7/2018, Accepted 28/8/2018)

SUMMARY

The present study was carried out at farm and laboratory of Animal Production Department- Faculty of Agriculture, Fayoum University, Egypt. *Helianthus tuberosus* in Ossimi rams rations were evaluated through digestibility, feeding values and some blood parameters. Ossimi rams weighed 45±5 kg in average were used to evaluate the rations supplemented by *Helianthus tuberosus*. The tested rations were D₁ (control) composed of 60% concentrate mixture (CM) + 40% wheat straw (WS); D₂, 52.5% CM + 7.5% *Helianthus tuberosus* (HT) +40% (WS); D₃, 45% CM +15% HT +40% WS and D₄, 30% CM +30% HT +40% WS. The results revealed that Ossimi rams fed rations of D₂ and D₃ showed higher significantly (P<0.05) values of most digestibility coefficients and feeding values compared with control ration. While, insignificant differences were found between D₁ and D₄ regarding digestibilities and feeding values. The obtained results of some blood parameters showed the same trend of rations digestibilities. Adding *Helianthus tuberosus* in the rations of D₂ and D₃ (7.5 and 15% HT) of Ossimi rams improved nutrients digestibility and feeding values and some blood parameters.

Keywords: *Helianthus tuberosus*, rams, digestibility coefficients, feeding values and blood parameters.

INTRODUCTION

Helianthus tuberosus (Jerusalem artichok), a plant of the Asteraceae family that grows in cool to warm climates, also cultivated widely in China for its highly adaptability and multiple tuber usability options, and its tubers can be produced world-wide, including Asia, Europe, and North America. (Slimestad et al., 2010 and Ma, 2011).

Helianthus tuberosus is a valuable fodder, technical and food culture that are becoming more widely used in various industries (Ryazanova et al., 1997). Also, *Helianthus tuberosus* useful components intended for use as raw materials for foods. Powder *Helianthus tuberosus* flour contains complex carbohydrate components, represented mainly polysaccharide nature inulin (up to 82%), proteins (up to 7%), fat (0.3-0.7%), vitamins (B1, B2, C), pectin (10%), fiber (7%), organic acids, macro- and trace elements (Sidorenko and Gorshkov, 2003 and Liflyandskiy, 2006)

Helianthus tuberosus contains many compounds including coumarines, unsaturated fatty acid, polyacetylenic derivatives (Matsuura et al., 1993) and sesquiterpenes (Baba et al., 2005). Therefore, it has various pharmacological activities, such as cholagogue, aphrodisiac, aperient, stomachic, diuretic, and tonic effects. Also, its tuber, a potential source of biomass, is used as food and folk medicine for the treatment of diabetes and rheumatism due to the presence of inulin, which can be converted into fructose. Moreover, it was found that the extracts of the aerial part were also possess antifungal, antimicrobial, and anticancer activities. (Pan et al., 2009) Additionally, *Helianthus tuberosus* leaf is a natural medicine for the treatment of skin wound, bone fracture and swelling. (Baba et al., 2005).
Inulin and oligofructose are present naturally in several fruits and vegetables like Jerusalem artichoke, chicory, onion, garlic, banana and others. Helianthus tuberosus is a plant that can serve as an alternative source of carbohydrates. Certain dietary oligosaccharides, such as inulin and oligofructose, are considered as prebiotics and they are possible substitutes for antibiotics (Best, 2000). Other benefits noted with fructooligosaccharides (FOS) or inulin supplementation include increased production of beneficial short-chain fatty acids such as butyrate, increased absorption of calcium and magnesium, and improved elimination of toxic compounds (Tomomatsu, 1994 and Van den Heuvel et al., 1999).

This study aimed to investigate the effect of partial replacement of concentrate mixture by Helianthus tuberosus in Ossimi rams ration on digestibility coefficient, feeding values and some blood parameters.

MATERIALS AND METHODS

The experiment was carried out at the Experimental Farm Station, Faculty of Agriculture, Fayoum University, Egypt to study the effect of supplementing Helianthus tuberosus replacement of concentrate mixture in ration of Ossimi rams on feed intake, nutrient digestibility, feeding values and some blood parameters.

Experimental animals

Twelve Ossimi rams weighted 45± 5 Kg in average were divided into 4 similar groups (3 rams each) and fed on the tested ration (Table 1). The tested rations were: the control ration (D1) composed of 60% concentrate mixture (CM) plus 40% wheat straw (WS). Concentrate mixture were replaced by 12.5, 25 and 50% of Helianthus tuberosus (HT) on dry matter basis for D2, D3 and D4, respectively. These replacements formed 7.5, 15 and 30% of the total rations dry matter for D2, D3 and D4, respectively. Thus, four tested rations were performed.

Digestibility trial

Digestibility trial was carried out to evaluate the nutrients digestibility and nutritive value of the tested rations. The animals were individually placed in metabolic cage for 15 day as a preliminary period followed by 7 days as a collection period. The ration was offered daily and refused if found were recorded every day. Total feces were daily collected and weighted. Feces sample (10%) was taken, sprayed with 10% H2SO4 and dried at 60ºc for 24 hours, then it was ground and kept for chemical analysis. Samples of offered feeds were composite dried separately, finally ground and kept for chemical analysis according to the methods of the A.O.A.C. (1995). Gross energy (GE) and digestible energy (DE) of feeds were calculated after Nehring and Haenlien (1973).

Blood analysis

Blood samples were taken at the end of the digestion trail before the morning feeding from the jugular vein. The samples were directly collected into vacuum tube and centrifuged at 3000 rpm for 5 min. serum was separated into polypropylene tube and stored at -18 ºC until analysis for total protein and albumin according to Weichselbaum, (1946) and Doumas et al. (1971), respectively. Globulin value was calculated by the differences between total protein and corresponding value of albumin. The total lipids was determined following method of Boutwell (1972), while cholesterol following Allain et al. (1974).

Statistical analysis

Data of the digestibility trial and some blood parameters were analyzed using general linear model procedure by computer program of SPSS (1997) and the differences between means were tested using Duncans new multiple test (Duncan, 1955). The statistical model was as follows: Yij = m+ Ai + eij Where Yij is dependent variable; m= overall mean; Ai= is the effect of treatment and eij= is the experimental error.
Table (1): Formula of the tested rations used in digestibility trial, on dry matter basis.

<table>
<thead>
<tr>
<th>Item</th>
<th>Tested rations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D<sub>1</sub> (control)</td>
</tr>
<tr>
<td>Concentrate mixture*, %</td>
<td>60</td>
</tr>
<tr>
<td>Wheat straw, %</td>
<td>40</td>
</tr>
<tr>
<td>Helianthus tuberosus,%</td>
<td>--</td>
</tr>
</tbody>
</table>

* Concentrate mixture consisted of 22% soybean cake, 50% yellow corn, 10% rice bran, 10% wheat straw, 3.5% molasses, 3% lime stone, 1% common salt and 0.5% minerals mixture.

RESULTS AND DISCUSSION

Chemical composition of the tested ration

Chemical composition of concentrate mixture, wheat straw, Helianthus tuberosus and tested rations are presented in Table (2). Helianthus tuberosus was higher of nitrogen free extract (69.65%) compared with concentrate mixture which was 48.61%. Also, crude protein of HT was 9.8% which was nearly similar to yellow corn. Crude fiber of HT was very lower (4.14%) than concentrate mixture which was 15.32%. Ash of HT had the same trend of crude fiber but gross energy (GE) of HT was similar to concentrate mixture and wheat straw. Also, chemical composition of Helianthus tuberosus was nearly similar to yellow corn. Thus, it has been replaced to concentrate mixture.

Table (2): Chemical analyses of ingredients and tested rations (on DM basis).

<table>
<thead>
<tr>
<th>Item</th>
<th>DM%</th>
<th>OM%</th>
<th>CP%</th>
<th>EE%</th>
<th>CF%</th>
<th>NFE%</th>
<th>Ash%</th>
<th>GE* Mcal/kgDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrate mixture</td>
<td>91.44</td>
<td>84.09</td>
<td>16.54</td>
<td>3.62</td>
<td>15.32</td>
<td>48.61</td>
<td>7.35</td>
<td>3.84</td>
</tr>
<tr>
<td>Helianthus tuberosus</td>
<td>92.07</td>
<td>85.78</td>
<td>9.80</td>
<td>2.19</td>
<td>4.14</td>
<td>69.65</td>
<td>6.29</td>
<td>3.83</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>91.54</td>
<td>79.81</td>
<td>3.89</td>
<td>1.85</td>
<td>33.42</td>
<td>40.65</td>
<td>11.73</td>
<td>3.81</td>
</tr>
<tr>
<td>D<sub>1</sub> (control)</td>
<td>91.48</td>
<td>82.38</td>
<td>11.48</td>
<td>2.91</td>
<td>22.56</td>
<td>45.43</td>
<td>9.10</td>
<td>3.84</td>
</tr>
<tr>
<td>D<sub>2</sub></td>
<td>91.53</td>
<td>82.50</td>
<td>10.97</td>
<td>2.80</td>
<td>21.72</td>
<td>47.00</td>
<td>9.02</td>
<td>3.83</td>
</tr>
<tr>
<td>D<sub>3</sub></td>
<td>91.57</td>
<td>82.63</td>
<td>10.47</td>
<td>2.70</td>
<td>20.88</td>
<td>48.58</td>
<td>8.94</td>
<td>3.81</td>
</tr>
<tr>
<td>D<sub>4</sub></td>
<td>91.67</td>
<td>82.89</td>
<td>9.458</td>
<td>2.483</td>
<td>19.21</td>
<td>51.738</td>
<td>8.78</td>
<td>3.78</td>
</tr>
</tbody>
</table>

*GE = tested diet three (30% concentrate mixture+40% wheat straw+30 Helianthus tuberosus)

Digestibility and nutritive values

The results in Table (3) showed that digestion coefficient of dry matter (DM%) was 58.83% in control diet (D₁) and was 63.04%, 62.08% and 59.31% of D₂, D₃ and D₄, respectively with significant differences (P<0.05). Organic matter (OM %) digestibility almost followed the same trend of DM digestibility. Digestion coefficient of crude protein (CP %) ranged between 58.52% and 73.59% being significantly (P<0.05) higher in D₂ than those of D₃ and control one. Digestion coefficient of ether extract (EE %) was nearly similar to the trend of CP digestibility. Generally, ration D₂ (7.5 % Helianthus tuberosus) showed the highest digestibilities of all nutrients especially when compared with D₁ (control ration) or D₄.
The yield potential, both for biomass and sugars, is higher in *Helianthus tuberosus* than chicory (*Cichorium intybus*). The plant shows good frost and drought tolerance, is resistant to diseases and can achieve a high yield of biomass (Slimestad et al., 2010). The inulin content in *Helianthus tuberosus* tuber ranges from 7 to 30% of fresh weight (Kays and Nottingham, 2007) or from 60 to 85.5% of dry weight (Aduldecha et al., 2016). Tubers of *Helianthus tuberosus* have high metabolizable energy content of 15 MJ · kg⁻¹ dry matter (Kleessen et al., 2007)

Blood Parameters

The results of some blood constituents are shown in Table (4). The obtained values were in normal range. Concentration of of total protein and albumin were significantly (P<0.05) higher in D₁ which consisted 7.5% *Helianthus tuberosus* than D₂ and D₃. No significant differences were found between D₂, D₃ and D₄ regarding globulin concentration. Meanwhile, D₂ and D₄ differed significantly (P<0.05) compared to D₁ (control ration). Concentration of cholesterol and creatinine were increased (P<0.05) significantly in D₁ (control diet) than the other diets. AST and ALT were not significantly different (P>0.05) among treatment. These results indicated that animals were generally in a good nutritional status and livers were in normal physiological conditions. Tienart et al. (2017) found that supplementation with inulin at 5g/kg or *Jerusalem artichoke*. While Nile tilapia diet did not affect any significant changes in several blood metabolites, including glucose, cholesterol, triglyceride or albumin. A previous study in juvenile tilapia revealed that dietary inulin or *Jerusalem artichoke* had no effect on cholesterol or triglyceride; however,
both increased glucose, plasma protein and albumin (Tietg tam et al., 2015). Such differences may reflect the effect of animal used or the level of *Helianthus tuberosus* in the ration.

Table (4): Some blood parameters of tested diets (on DM basis) fed to Ossimi rams.

<table>
<thead>
<tr>
<th>Item</th>
<th>Tested rations</th>
<th>± SE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1 (control)</td>
<td>D2</td>
</tr>
<tr>
<td>Total protein (g/dl)</td>
<td>5.72b</td>
<td>6.91a</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>2.93c</td>
<td>3.49a</td>
</tr>
<tr>
<td>Globulin (g/dl)</td>
<td>3.19b</td>
<td>3.55a</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>98.40a</td>
<td>94.57bc</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>51.07a</td>
<td>50.14bc</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.20a</td>
<td>1.13ab</td>
</tr>
<tr>
<td>ALT (u/ml)</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>AST (u/ml)</td>
<td>43</td>
<td>40</td>
</tr>
</tbody>
</table>

Average in the same row with different superscripts are different (P≤0.05) for a,b and c.

The *Helianthus tuberosus* addition into diets significantly (P ≤ 0.05) increased total short-chain fatty acids concentrations as the level of Jerusalem artichoke in the diet increased. Also, lactic acid content was increased and ammonia concentration was reduced in feces due to *Helianthus tuberosus* supplementation (Samal et al., 2017). These findings may suggest the obtained results of total protein and triglycerides.

CONCLUSION

Supplementing *Helianthus tuberosus* to the ration of Ossimi rams as replacement with 7.5% and 15% improvement nutrient digestibility, feeding values and some blood parameters. Also, more researches were needed to examine different levels of *Helianthus tuberosus* in the diets with different animal types.

REFERENCES

SPSS (1997). Statistical Package for Social Science release 8.0 copyright (c), SPSS INC., Chicago, USA.

