GROWTH PERFORMANCE AND CARCASS TRAITS OF JAPANESE QUAIL AS AFFECTED BY DIETARY HIGH DIETARY VITAMIN A AND D3 SUPPLEMENTATION DOSES.

M. Metwally ${ }^{1}$, Noura A.A ${ }^{2}$ and M. El-kelawy ${ }^{2}$
${ }^{1}$ Dept. of Poultry Production, Fac. of Agric. Assiut Univ. Egypt
${ }^{2}$ Dept. of Poultry Production, Fac. of Agric. New Valley Univ. Egypt
Corresponding author: metwally7658@yahoo.com

SUMMARY

Abstract

Atotal number of one hundred eighty unsexed seven-days-old quails were used in present study in a 2×3 factorial arrangement (2 levels of vitamin A, 0 and $40,000 \mathrm{IU} / \mathrm{kg}$ feed) and three levels of vitamin D3 (0,1500 and $3000 \mathrm{ICU} / \mathrm{kg}$ feed). Chicks were randomly divided into six equal treatments of three replicates of ten quails each. Results showed that vitamin A affects significantly ($\mathrm{P}<0.05$) on body weight (BW) at 28 and 35 days of age. The highest level of vitamin A ($40,000 \mathrm{IU}$) achieved an increase in BW. Also, vitamin D affects significantly ($\mathrm{P}<0.05$) BW at 42 days of age. The highest levels of both vitamin A and D3(40,000 IU vitamin A and 3000 ICU vitamin D3) in treatment 6 achieved the heights BW compared to control treatment. Vitamin A affects significantly ($\mathrm{P}<0.05$) body weight gain (BWG) during the period from 7-28 and 7-42days of age. The highest level of vitamin A ($40,000 \mathrm{IU}$) achieved an increase in BWG. However, vitamin D affects significantly ($\mathrm{P}<0.05$) on BWG during the period from 7-42 days of age. Vitamin A affects significantly ($\mathrm{P}<0.05$) on feed consumption during (14-21), (21-28), (28-35), and (35-42) days of age. Vitamin A affect significantly ($\mathrm{P}<0.05$) on feed conversion ratio (FCR) during the period from 7-35 and 7-42 days of age. Vitamin D3 affects significant ($\mathrm{P}>0.05$) on FCR during the period from 7-14, 7-$21,7-28,7-35$, and 7-42 days of age. The highest levels of both vitamin A and D3(40,000 IU vitamin A and 3000 ICU of vitamin D3 $/ \mathrm{kg}$) achieved the best values of both BW and BWG compared to control group. Vitamin A didn't affect significantly on carcass characteristics, but vitamin D3 affects significantly on gizzard weight and the highest levels of vitamin D3 (1500 and 3000 ICU $/ \mathrm{kg}$ feed) achieved a decrease in gizzard weight. Also, the level of 3000 ICU achieved increase in carcass constituents.It can be concluded that the level of 40000 IU vitamin A / kg achieved the highest values of both body weight and body weight gain. The addition of 3000 ICU of vitamin D $3 / \mathrm{kg}$ feed improved FCR. Therefore, the results of this study show the improvement of growth performance and carcass traits in Japanese quail, especially at the level of 40000 IU vitamin A / kg or $3000 \mathrm{IU} / \mathrm{kg}$ of vitamin D3/kg.

Keywords: Quail, vitamin A, vitamin D3, performance, carcass.

INTRODUCTION

Generally, quail occupy a small but special segment of the Egyptian poultry industry. These birds are raised as source of specialty egg and meat. Japanese quail have the advantage of rapid growth rate, small size, good reproductive potential, short life cycle, low feed requirements, good meat taste, better laying ability and shorter time of hatching as compared with the different species of poultry (Roshdy et al., 2010 and Siyadati et al., 2011). The optimum performance of livestock depends largely on the quality and quantity of their dietary nutrients. Compared to other game birds, requirements of Japanese quail are more documented (NRC, 1994), but are to fare to be compared with other domestic fowl and they are missing last 20 years. The increase in quail production has been highlighted over the last years. Its evolution has been constant and increasing numbers of poultry companies have expressed an interest in improving their product quality at a

Metwally et al.

low cost and in meeting the needs of the consumer (Bertechini, 2009). The market is expanding and, as a result, companies related to quail production need scientific information and data pertaining to nutrition, genetics, management, and ambience of meat-type quail to enhance their production. An accurate determination of nutritional requirements is of great importance to all bird species, as diet is perhaps the main environmental factor that determines bird growth and allows them to reach their maximum genetic potential (Albino and Barreto, 2003). Calcium deposition in the skeleton is greater during the grower phase. Thus, calcium content in the body of chicks increases quickly in the starter stage, so that at the end of the first month of age the chicks have 80% of the total calcium of an adult bird (Edwards, 2000).

Japanese quail (Coturnix coturnix japonica) has gained attention in poultry industry. It is becoming more popular as a source of meat and eggs in various countries including Egypt due to rapid growth enabling quail to be marketed for human consumption at 5-6 week of age, early sexual maturity, high egg production rate and much lower feed and space requirement than domestic fowls (Manville, 2004 and Huss, et al., 2008). Uni et al. (2000) reported that the absence of vitamin A interferes with the normal growth rate in chickens because it influences the functionality of the small intestine by altering proliferation and maturation of cells in the small intestinal mucosa. Aburto, and Britton $(1998 \mathrm{a}, \mathrm{b})$ found that feeding vitamin A at $80,000 \mathrm{IU} / \mathrm{kg}$ of diet caused a small reduction in BW. Moreover, reported that body weight was reduced when vitamin A was fed at $40,000 \mathrm{IU} / \mathrm{kg}$ of diet. Friedman and Sklan (1989a,b) reported that the BW between two groups of chickens receiving either normal (1 mg retinol equivalent $/ \mathrm{kg}$ feed) or vitamin A depleted diets (no added vitamin A) were not significantly different which may be due to the short period of experiment (40 days). Mori et al. (2003) noticed an increase in the feed consumption (FC) while hens were supplied with vitamin A at the level $30,000 \mathrm{UI} / \mathrm{kg}$ of feed.

Kheiri and Landy (2019) reported that final body weight (BW) of broiler chickens supplemented with 1$\alpha(\mathrm{OH}) \mathrm{D}_{3}$ and 1500 IU of cholecalciferol/ kg of diet and $1-\alpha(\mathrm{OH}) \mathrm{D}_{3}$ and 3000 IU of cholecalciferol/ kg of diet was greater than those fed basal diet, basal diet supplemented with 1- $\alpha(\mathrm{OH}) \mathrm{D}_{3}$ alone and basal diet supplemented with 1- $\alpha(\mathrm{OH}) \mathrm{D}_{3}$ and 5000 IU of cholecalciferol $/ \mathrm{kg}$ of diet. Bhuiyan et al. (2004) showed that overall body weight gain (BWG) and feed efficiency were significantly better in the vitamin A group receiving $1500 \mathrm{IU} / \mathrm{kg}$ feed.

Perine et al. (2016) found that in meat-type quail (Coturnix coturnixsp) between 15- and 35-days old body weight increased linearly with the four levels of vitamin D :1000; 2,000; 3,000; and 4,000 IU. Han et al. (2015) reported that supplementation of $5 \mu \mathrm{~g} / \mathrm{kg} 1 \mathrm{a}-\mathrm{OH}-\mathrm{D}_{3}$ in diets containing 0.30% of NPP could improve growth performance of broiler chickens. Landy and Toghyani (2014) evaluated the efficacy of feeding $5 \mu \mathrm{~g}$ of $1-\alpha(\mathrm{OH}) \mathrm{D}_{3} / \mathrm{kg}$ of diet as a replacement for cholecalciferol in compare with dietary containing 5000 IU cholecalciferol/kg of diet, the result indicated that $1-\alpha(\mathrm{OH}) D_{3}$ as a replacement for cholecalciferol could improve growth performance of broiler chickens whereas the results were not statistically significant. Cho et al. (2019) reported that at 14 day of age, the effect of dietary Vitamin D_{3} levels on body weight gain was mathematically significant between the groups that received $\mathrm{VD}_{3} 200 \mathrm{IU} / \mathrm{kg}$ of feed and $3,125 \mathrm{IU} / \mathrm{kg}$ of feed, and the highest weight gain was observed in birds fed with VD_{3} at $3,125 \mathrm{IU} / \mathrm{kg}$ of feed. Han et al. (2012) indicted that the addition of $1 \alpha-\mathrm{OH} \mathrm{D}_{3}$ increased BWG in Ca- and P-deficient diets of 21- to 42-d-old broilers. Atencio et al. (2005) reported that increasing the level of $25-\mathrm{OH}-\mathrm{D} 3$ in the chick's diet significantly improved body weight gain.

Fatahi et al. (2019) found that feed conversion ratio were influenced by levels of vitamin $\mathrm{D}_{3}(\mathrm{p}<0.05)$, The feed conversion ratio in $4000 \mathrm{IU} / \mathrm{kg}$ of vitamin $\mathrm{D}_{3}(3.68)$ was significantly lower than the control (4. $22)(\mathrm{p}<0.05)$. Kheiri et al. (2019) illustrated that Ca-P-deficient diets supplemented with phytase and $1 \alpha-\mathrm{OH}-$ D_{3} improved FCR in quails. Kheiri and Landy (2019) reported that feed conversion ratio of broiler chickens fed basal diet supplemented with $1-\alpha(\mathrm{OH}) \mathrm{D}_{3}$ and 1500 or 3000 IU of cholecalciferol/ kg of diet were significantly better than those fed basal diet, basal diet supplemented with $1-\alpha(\mathrm{OH}) \mathrm{D}_{3}$ alone or basal diet supplemented with 1- $\alpha(\mathrm{OH}) \mathrm{D}_{3}$ and 5000 IU of cholecalciferol/ kg of diet. Perine et al. (2016) found that feed conversion showed some linear improvement due to increased levels of Ca and vitamin D. Landy et al. (2015) reported that the supplementation of 5000 IU cholecalciferol $/ \mathrm{kg}$ of diet contained $5 \mu \mathrm{~g}$ of $1-\alpha(\mathrm{OH}) \mathrm{D}_{3} / \mathrm{kg}$ of diet significantly decreased feed efficiency of broiler chickens during starter period.

Okafor and Kalio (2017) reported that there was a significant difference in the weight of the gizzards at the 80% and 100% inclusion levels. Birds fed 100% inclusion levels of vitamin D_{3} in their diet had the highest carcass weight. Perine et al. (2016) observed that calcium and vitamin D levels did not have
significant effects $(\mathrm{P}>0.05)$ on carcass and cut yields. However, the same pattern was observed with WG and BW such that calcium and vitamin D levels led to a linear increase ($\mathrm{P}<0.05$) in carcass weight, breast weight, and leg weight. Calcium and vitamin D requirements in meat-type quail between 15 and 35 days of age is greater or equal to $0.90 \% \mathrm{Ca}$ and greater or equal to $4,000 \mathrm{IU}$ of vitamin D , probably because the experiment was conducted during the pre-laying phase. The femoral seedor index increased linearly ($\mathrm{P}<0.05$) due to calcium levels, while a quadratic effect ($\mathrm{P}<0.05$) was Observed as a result of vitamin D levels, with an estimated Level of $2,756 \mathrm{IU}$ of vitamin D. Dietary $25 \mathrm{OHD}_{3}$ supplementation has also been reported to improve breast meat yield as a result of increased muscle protein synthesis (Hutton et al., 2014; Vignale et al., 2015). Khan et al. (2010) showed that the dressing percentage and breast meat yield were better in birds fed diets containing 2500 or $3500 \mathrm{IU} / \mathrm{Kg}$ vitamin D_{3}. Paul et al., (2010) reported that increased vitamin supplementation in broiler diets significantly improved carcass composition of broilers The tibia Seedor index and femoral bone resistance increased linearly ($\mathrm{P}<0.05$). 25-Hydroxycholecalciferol is formed in the liver from vitamin D_{3} by the 25-hydroxylase (Bar et al., 2003). Deficiencies and excesses of vitamins, minerals and minor nutrients may affect leg Health (Waldenstedt, 2006). Aburto and Britton (1998a,b) had shown an effect of vitamin A in the range 0.45 to $4.5 \mathrm{mg} / \mathrm{kg}$ on vitamin D3 status and requirement, but the present findings suggest that within a narrower range encompassing the dietary range most often encountered in commercial practice, vitamin A is not a factor influencing vitamin D3 requirement and the high dietary concentrations of vitamin A have been found to depress the vitamin D3, status of chicks, as assessed by growth, bone ash content and incidence of rickets. This positive response to dietary vitamin D3 was produced only when vitamin A was added at $1,500 \mathrm{IU} / \mathrm{kg}$ of diet, because vitamin A ($45,000 \mathrm{IU} / \mathrm{kg}$) interfered with dietary vitamin D3 ($500 \mathrm{IU} / \mathrm{kg}$) in birds exposed to UV light. Veltmann and Jensen (1985) reported that high dietary concentrations of vitamin A have been found to depress the vitamin D3 status of chicks, as assessed by growth, bone ash content and incidence of rickets. High dietary concentrations of vitamin A have been found to alleviate the toxicity of vitamin D3.

Therefore, the present study was conducted to investigate the growth performance and carcass traits of Japanese quail as affected by dietary vitamin A and D3 supplementation.

MATERIALS AND METHODS

The study was conducted at the Poultry Research Farm, Dep. of Poultry Production, Faculty of Agriculture, New Valley University, during the period from March to April 2019.

Experimental birds, measurements and design:

A total number of 180 (one hundred eighty) unsexed seven-days-old quails were used in present study in a 2×3 factorial arrangement (2 levels of vitamin $\mathrm{A}, 0$ and $40,000 \mathrm{IU} / \mathrm{kg}$ feed) and three levels of vitamin D3 (0,1500 and $3000 \mathrm{ICU} / \mathrm{kg}$ feed). Chicks were randomly divided into six equal treatments of three replicates each of ten quails each. Experimental diets were corn -soybean based and contain 24% (standard protein requirement according to NRC (1994, recommendation). The ingredient composition and chemical analysis of the experimental diets are presented in Table 1. Samples of the experimental diets were taken for analysis according to AOAC (1990). One alpha-hydroxycholecalciferol (VIT-D3) based on the conversion of $0.025 \mu \mathrm{~g}$ to 1 ICU (Leeson and Summers, 2001).The experimental design as follows: Treatment 1: chicks were fed basel diet (control); Treatment 2: chicks were fed basel diet with 1500 ICU of Vit. D3; Treatment 3: chicks were fed basel diet with 3000 ICU of Vit. D3; Treatment 4: chicks were fed basel diet with 40,000 IU of Vit. A.;Treatment 5:chicks were fed basel diet with $40,000 \mathrm{IU}$ of vitamin A +1500 ICU of Vit.D3.;Treatment 6:chicks were fed basel diet with 40,000 IU of vitamin A +3000 ICU of Vit.D3.

The experimental chicks were housed in galvanized batteries composed of three tiers, equipped with cages, having the dimensions of (75 cm length, 50 cm width and 45 cm height) and placed in a semi closed house. They were raised under adequate and similar managerial, nutritional and hygienic conditions. Chicks were exposed during the first three days of age to a lighting period of $23 \mathrm{hr} /$ day, which was gradually decreased by 1 hr /day to reach $12 \mathrm{~L}: 12 \mathrm{D}$ hours/day during the rest of the growing period. Body weight and feed consumed were recorded starting from seven days of age and each week per each replicate till the last of the experiment at 42 days of age. Body weight gain and feed conversion ratio were calculated during the period from 0-7, 0-14, 0-21, 0-28, 0-35, 0-42 and 0-49 days of age according to McDonald et al. (1987).

Metwally et al.

Mortality was recorded daily. In the last of the experiment, three chicks from each replicate (total 45 chicks) were taken to slaughter to measure carcass parts and dressing percentage. Complete bleeding, scalding and plucking, the edible organs (heart, liver, empty gizzard), and estimated as percentage of the live body weight. The dressing percentage was estimated by dividing the weight of the carcass giblets on the pre-slaughter body weight of birds.

Statistical analysis:

The Data were statistically analyzed by using ANOVA and General linear Model (GLM) procedure of SAS software (2009). Duncan's multiple range tests (1955), was used to determine the difference among means, when the treatment effects were significant. Significant difference were considered to exist when ($\mathrm{p}<0.05$). The mathematical model used was:

$$
Y i j k=\mu+A i+D j+(A D) i j+e i j k
$$

Where: Y_{iK} is any abservation by vit A and $\mathrm{D} 3 ; \mu=$ the population mean.; $\mathrm{A}_{\mathrm{i}}=$ Vitamin A effect $(\mathrm{i}=1,2)$; $D_{j}=$ Vitamin $D 3$ effect $(j=1,2,3) ;(A D) i j=$ Interaction effects; $e_{i \mathbf{k}}=$ Experimental error.

RESULTS AND DISCUSSION

Body weight:

The results of body weight (BW) of Japanese Quails as affected by dietary vitamin A and vitamin D_{3} supplementation are shown in Table (2). Vitamin A at level of $40,000 \mathrm{IU} / \mathrm{Kg}$ of diet improved BW of quail at 28 and 35 days of age as compared to control group. On the other hand, there were no significant differences in the remainder ages of the experiment. This result may be in agreement with Aburto and Britton, (1998a,b) who found that feeding VIT. A at $80,000 \mathrm{IU} / \mathrm{kg}$ of diet caused a small reduction in BW. Moreover, reported that body weight was reduced when VIT A was fed at $40,000 \mathrm{IU} / \mathrm{kg}$ of diet. Also, Friedman and Sklan (1989a,b) reported that the BW between two groups of chickens receiving either normal (1mg retinol equivalent/kg feed) or VIT A depleted diets (no added VIT A) were not significantly different which may be due to the short period of experiment (40 days).

Furthermore, Quail chicks fed basal diet with 1500 and 3000 IU of vitamin D3 had significantly greater ($\mathrm{P} \leq 0.01$) BW compared to the control group at 42 d of age. The obtained results are in agreement with. Stevens et al. (1984) who observed an increase in BW in poults hatched from turkey breeders fed 300, 900, and $2,700 \mathrm{IU} / \mathrm{kg}$ of VIT. D3, Bajwa et al. (2020) explained that supplementation of vitamin D sources improved the growth performance $(\mathrm{P}<0.05)$. On the other side, Alves et al. (2018) found that the performance variables BW at ages from 7 to 42 days were significantly poor $(\mathrm{P}<0.05)$ when the metabolite $1,25(\mathrm{OH})$ 2D3glycoside was used as the single source of vitamin D. Edwards et al. (1994) reported that birds fed no VITD3 were exposed to ultraviolet light from battery fluorescence tubes required 800 to $1,600 \mathrm{IU} / \mathrm{kg}$ of dietary VITD3 to provide maximum response for 16 -d body weight,. Also, Han et al. (2009) reported that supplementation of $5 \mu \mathrm{~g} 1-\alpha(\mathrm{OH}) \mathrm{D} 3 / \mathrm{kg}$ to broiler chicken diet containing $5 \mu \mathrm{~g}$ cholecalciferol $/ \mathrm{kg}$ had negative effects on BW of broiler chickens, which indicated that $1-\alpha(\mathrm{OH}) \mathrm{D} 3$, could not enhance growth performance indices of broiler chickens when basal diet contained adequate content of cholecalciferol

The effect of the interaction between vitamin A and D3 in the two treatments, T4, T5 and T6 were higher than other treatments and control at ages 28,35 and 42 days, while there were no significant differences between treatments at 7,14 and 21 days of age.

Body weight gain:

The results of body weight gain of Japanese Quails as affected by vitamin A and vitamin D supplementation are shown in Table (3). Vitamin A at $40,000 \mathrm{IU} / \mathrm{Kg}$ of diet addition improved BWG of quail during periods $7-28$ and $7-35 \mathrm{~d}$ of age compared with control group. The results obtained were consistent with Bhuiyan et al. (2004) showed that Overall BWG and feed efficiency were significantly better in the Vit A group receiving $1500 \mathrm{IU} / \mathrm{kg}$ feed. Also, Uni et al. (2000) reported that the absence of VIT A interferes with the normal growth rate in chickens because it influences the functionality of the small intestine
by altering proliferation and maturation of cells in the small intestinal mucosa. On the other hand, there were no significant differences in the remainder of the experiment periods compared to the control. Matching to Shellenberger and Lee (1965) reported that Japanese quail did not show growth responses to VIT A supplementation in the low or high energy diets at levels of 550 to 4400 units $/ \mathrm{kg}$. Furthermore, Quail chicks fed basal diet with 1500 and 3000 IU of vitamin D had significantly greater ($\mathrm{P} \leq 0.01$) BWG compared to the control group during 7-42d of age. The obtained results are in agreement with (Khan et al., 2010; GómezVerduzco et al., 2013) who reported that VIT-D3 added In diets of broiler chickens at 10 times ($2000 \mathrm{IU} / \mathrm{kg}$ of feed) the recommendations of NRC (1994), or those levels commonly included in commercial feed formulations improved the body weight gain (BWG).Also, Positive results have been obtained for other VIT. D3 derivatives, i.e., 1α-hydroxycholecalciferol ($1 \alpha-\mathrm{OH}-\mathrm{D} 3$), whereby addition to a low Ca and P diet increased BWG (Ebrahimi et al., 2016). Bajwa et al. (2020) showed that supplementation of vitamin D sources improved the growth performance ($\mathrm{P}<0.05$).

The effect of the interaction between vitamin D and A led to an increase in body weight in treatments T4, T5 and T6 compared to treatment T3 and T1 (control) in the period from (7-28), while there were no significant differences due to the interaction effects in the other periods. It was cleared that the high dose of vitamin A ($40000 \mathrm{IU} / \mathrm{kg}$ feed) achieved the highest body weight gain compared to control chicks. Also, the high dose of both vitamin A ($40000 \mathrm{IU} / \mathrm{kg}$) plus 1500 or 3000 ICU vitamin D3/kg achieved also the highest BWG compared to the other levels during the periods of 7-28, 7-35 and 7-42 days of age. The obtained results are in agreement with Veltmann et al. (1986), who found that a significant vitamin A x vitamin D interaction was observed in weight gain response. A much wider range of vitamin A and vitamin D levels may explain the difference in response. it was apparent that increasing vitamin D level in the diet of starting chicks to at least $1,500 \mathrm{ICU} / \mathrm{kg}$ with appropriate levels of other fat soluble vitamins improved weight gain and feed efficiency. On the other hand, Lofton and Soares (1986) did not show the same response to increasing D levels in broilers. The negative effect of simultaneous presence of excessive levels of vitamin A and vitamin D on weight gain does not agree with the observation reported by Payne and Manston (1967) in cattle, where the two vitamins at high levels seemed to depress toxic effects of each other. Veltmann and Jensen (1985) reported that high dietary concentrations of vitamin A have been found to depress the vitamin D3 status of chicks, as assessed by growth, bone ash content and incidence of rickets. High dietary concentrations of vitamin A have been found to alleviate the toxicity of vitamin D3.

Feed consumption (FC):

The results of feed consumption of Japanese Quails as affected by dietary vitamin A and vitamin D supplementation are shown in Table (4). It was found that there was an increase in feed consumption when vitamin A was added at the level of $40,000 \mathrm{IU}$ compared to control during the all-experiment periods, except for the first period from 7-14 days. The obtained results agreed with Mori et al. (2003) who noticed an increase on FC while hens were supplied with VIT A at the level $30,000 \mathrm{UI} / \mathrm{kg}$ of feed. However, our findings were in contrast to Mendonça Júnior et al. (2002), who did not verify any differences on FC of hens supplied with VIT. A supplementation. Vitamin A supplementation did not result in statistical difference for daily feed intake of quails during the experimental period. Similar results with vitamin A supplementation were described by Lin et al. (2002). However, Mori et al. (2003) noticed an increase on feed intake while hens were supplied with vitamin A at the level $30,000 \mathrm{UI} / \mathrm{kg}$ of feed.

The results of vitamin D3 supplementation indicated that, there were no significant differences in feed consumption when adding vitamin D3 with all levels during the experiment periods. The obtained results agreed with Bonagurio et al. (2020) who reported that supplementation of (25-OH-D3 did not influence FC. Also, Adhikari et al. (2020) showed that there was no difference in FC between hens fed diets supplemented with different levels of vitamin D3 and 25-OHD.

In addition to, Kheiri and Landy (2019) stated that in starter period, there were no significant differences between vitamin D3 dietary treatments for FC. Alves et al. (2018) found that the performance variables FC during the $7-42$ days period were significantly poor ($\mathrm{P}<0.05$) when the metabolite $1,25(\mathrm{OH}) 2 \mathrm{D} 3$ - glycoside was used as the single source of vitamin D. Lin et al. (2002) and MendonçaJúnior et al. (2002), did not verify any differences on FC of hens supplied with VIT A supplementation. On the contrary, Frost and Roland (1990) determined a significant $3 \mathrm{~g} / \mathrm{h} / \mathrm{d}$ improvement of FC when hens were fed a diet supplemented with $1,500 \mathrm{IU} / \mathrm{kg}$ of D3 and $1 \mu \mathrm{~g} / \mathrm{kg}$ of $1,25-(\mathrm{OH}) 2-\mathrm{D} 3$ with $0.55 \% \mathrm{P}$ and $3.75 \% \mathrm{Ca}$. Also, Musapuor et al. (2005)

Metwally et al.

noted a significant ($\mathrm{P} \leq 0.05$) increase in FC when hens (42 weeks of age) were fed a supplemental diet of 400 IU/kg of D3 with 2.27 or $3.25 \% \mathrm{Ca}$. Mori et al. (2003) noticed an increase on FC while hens were supplied with VIT, A at the level $30,000 \mathrm{UI} / \mathrm{kg}$ of feed. Also, Atencio et al. (2005) reported that increasing the level of $25-\mathrm{OH}-\mathrm{D} 3$ in the chicks' diet did not affect the FC and they also reported that FC increased as the VIT.D3 level in the maternal diet of broiler breeder hens. In cases of prolonged toxicity, VIT. D can cause a decrease in FC (Zanuzzi et al., 2012). Also, Chou et al., (2009) found that the supplementation of broiler diets with $25(\mathrm{OH})$ D3 has been reported to decrease feed consumption and to subsequently improve feed efficiency by 5% during the grower phase.

In the interactions during the period of 7-14 days of the experiment, the results showed that there were no significant differences between all treatments. However, there were significant ($\mathrm{p}<0.05$) interaction effects between the previous two vitamins during the other periods (7-21, 7-28, 7-35 and 7-42 days of age). It was cleared that the high dose of vitamin A ($40000 \mathrm{IU} / \mathrm{kg}$ feed) achieved the highest FC compared to control chicks. Also, the high dose of both vitamin A ($40000 \mathrm{IU} / \mathrm{kg}$) plus 1500 or 3000 ICU vitamin D3/kg achieved also the highest FC compared to the other levels. Metz et al. (1985) reported that when fed a diet containing the required level of vitamin A ($4,000 \mathrm{IU} / \mathrm{kg}$, NRC estimated requirement) and a high level of vitamin $\mathrm{D}(900,000 \mathrm{ICU} / \mathrm{kg})$, poults developed hypervitaminosis D as evidenced by mild growth depression and renal tubular mineralization. When poults were fed a diet containing high levels of both vitamins A and D growth rate and bone mineral content were like control poults fed a diet containing the required levels of vitamins A and D. In addition, lameness and renal tubular mineralization were not apparent in the poults fed a diet containing high levels of both vitamins A and D. It was concluded that there is an antagonistic interaction between vitamins A and D.

Feed conversion ratio (FCR):

The results of feed conversion ratio on Japanese Quails as affected by dietary vitamin A and vitamin D supplementation are shown in Table (5). Concerning with the main effect of vitamin A, the results showed that vitamin A at $40,000 \mathrm{IU} / \mathrm{Kg}$ of diet addition affect significantly ($\mathrm{P}<0.05$) on feed conversion ratio of quail during periods $7-35$ and 7-42 days of age. However, the highest level of vitamin A ($40000 \mathrm{IU} / \mathrm{kg}$ feed) achieved lower FCR than control group. No significant ($\mathrm{P}>0.05$) effects due to vitamin A on FCR on the periods of 7-14, 7-21 and 7-28 days of age. Vitamin A supplementation did not result in statistical difference for FCR of quails during the experimental period (Marques et al., 2011). Similar results with vitamin A supplementation were described by Lin et al. (2002) and Mendonça Júnior et al. (2002), who also did not verify any differences on FCR of hens supplied with vitamin A supplementation. However, concerning with the main effect of vitamin D3 effects, no significant difference due to vitamin D3 on FCR during the whole experiment. These results are consistent with Bonagurio et al. (2020) who reported that supplementation of (25-OH-D3 did not influence FCR. Fatahi et al. (2019) reported that the feed conversion ratio in $4000 \mathrm{IU} / \mathrm{kg}$ of vitamin D3 (3.68) was significantly lower than the control (4.22) ($\mathrm{p}<0.05$). The group (T3) in which chicks were fed the highest level of vitamin D3 (3000 ICU of vitamin D3/kg feed) achieved the best FCR compared to the other treatment on the period of 7-35 and 7-42 days of age.

Carcass characteristics:

The results of carcass constituents Japanese Quails affected by dietary vitamin A and vitamin D are shown in Table (6). The addition of different levels of vitamin A ($0,40000 \mathrm{IU}$) did not lead to any significant effect on the studied carcass characteristics. Davis and Sell (1983) reported reduced impaired growth of the Bursa of Fabricius and thymus in chicks fed a low VIT A diet and VIT A free diet when compared to birds raised on a supplemented VIT A diet.

REFERENCES

Aburto, A., and W.M. Britton (1998a). Effects of different levels of vitamins A and E on the utilization of cholecalciferol by broiler chickens. Poult. sci, 77(4), pp.570-577.

Aburto, A., and W.M. Britton (1998b). Effects and interactions of dietary levels of vitamins A and E and cholecalciferol in broiler chickens. Poult. sci, 77(5), pp.666-673.

Adhikari, R., D. White, J.D. House, and W.K. Kim (2020). Effects of additional dosage of vitamin D3, vitamin D2, and 25-hydroxyvitamin D3 on calcium and phosphorus utilization, egg quality and bone mineralization in laying hens. Poult. sci, 99(1), pp.364-373.

Albino, L.F.T. and S.L. de Toledo Barreto (2003). Criação de codornas para produção de ovos e carne. Aprenda fácil.
Alves, O.D.S., L.F.L., Calixto, A.H.B., Araujo, K.A.A., Torres-Cordido, T.L. Reis, and A.A. Calderano (2018). Decreased levels of vitamin D3 and supplementation with 1, 25-dihydroxyvitamin D3-glycoside on performance, carcass yield and bone quality in broilers. Ciência Rural, 48.
Atencio, A., G.M. Pesti, and H.M. Edwards Jr (2005). Twenty-five hydroxycholecalciferol as a cholecalciferol substitute in broiler breeder hen diets and its effect on the performance and general health of the progeny. Poult. Sci, 84(8), pp.1277-1285.
Bajwa, M.H., M.A. Mirza, G. Ahmad, and T. Mahmood (2020). comparative efficancy of vitamin d sources on growth response and bone mineralization in broilers. Pakistan Journal of Agricultural Sciences, 57(1).

Bar, A., V. Razaphkovsky, E. Vax, and I. Plavnik (2003). Performance and bone development in broiler chickens given 25-hydroxycholecalciferol. British poult. sci, 44(2), pp.224-233.
Beterchini, A. G. (2009). Como estão as codornas? In: Avicultura industrial. Available at: <http://www.aviculturaindustrial.com.br/ portalgelissulli/noticias.htm>. Accessed on: Jan. 21, 2013.
Bhuiyan, A.R., C. Lauridsen, A.R. Howlider, and K. Jakobsen (2004). Importance of vitamin A supplementation for performance of Sonali chickens under smallholder farm conditions in a tropical climate. Livestock Research and Rural Development, 16, p.83.

Bonagurio, L.P., F.K. Cruz, I.N. Kaneko, P.T. Matumoto-Pintro, A.E. Murakami, and T.C. Santos (2020). Dietary supplementation with canthaxanthin and 25-hydroxycholecalciferol has beneficial effects on bone and oxidative metabolism in European quail breeders. Poult. Sci, 99(10), pp.4874-4883.
Cho, T. Z. A., Sadiq, M. B., Srichana, P., and A. K. Anal (2019). Vitamin D3 enhanced intestinal phosphate cotransporter genes in young and growing broilers. Poultry science, 99(4), 2041-2047.

Chou, S.H., T.K. Chung, and B. Yu (2009). Effects of supplemental 25 -hydroxycholecalciferol on growth performance, small intestinal morphology, and immune response of broiler chickens. Poultry science, 88(11), pp.2333-2341.
Davis, C.Y., and J.L. Sell (1983). Effect of all-trans retinol and retinoic acid nutriture on the immune system of chicks. The Journal of nutrition, 113(10), pp.1914-1919.

Ebrahimi, H., F. Shariatmadari, and M.A. Karimi Torshizi (2016). Dietary supplementation and in ovo injection of 1α-OHD3 in a low-calcium and low-phosphorous diets for broilers. Journal of Applied Animal Research, 44(1), pp.113-117.
Edwards Jr, H. M. (2000). Nutrition and skeletal problems in poultry. Poult. Sci, 79(7), 1018-1023.
Edwards JR, H.M., M.A. Elliot, S. Sooncharernying, and W.M. Britton (1994). Quantitative requirement for cholecalciferol in the absence of ultraviolet light. Poult. Sci, 73(2), pp.288-294.

Fatahi, S., Vakili, S.Tabatabaei, M. Mamouei and A. Aghaei (2019). Evaluation the effect of different levels of dietary vitamin D3 on productive and egg quality traits in Japanese quail. Journal of Animal Environment, 11(3), pp.85-92.
Friedman, A. and D., Sklan (1989a). Impaired T lymphocyte immune response in vitamin A depleted rats and chicks. British journal of nutrition, 62(2), pp.439-449.

Friedman, A., and D. Sklan (1989b). Antigen-specific immune response impairment in the chick as influenced by dietary vitamin A. The Journal of nutrition, 119(5), pp.790-795.

Frost, T.J., D.A. Roland Sr, and G.G. Untawale (1990). Influence of vitamin D3, 1α-Hydroxyvitamin D3, and 1, 25-Dihydroxyvitamin D3 on eggshell quality, tibia strength, and various production parameters in commercial laying hens. Poult. Sci, 69(11), pp.2008-2016.

Metwally et al.

Gómez-Verduzco, G., R. Morales-López, and E. Avila-Gozàlez (2013). Use of 25-hydroxycholecalciferol in diets of broiler chickens: effects on growth performance, immunity and bone calcification. The Journal of Poult. Sci, 50(1), pp.60-64.

Han, J.C., X.D. Yang, L.M. Zhang, W.L. Li, T. Zhang, Z.Y. Zhang, and J.H. Yao (2009). Effects of $1 \alpha-$ Hydroxycholecalciferol and Phytase on Growth Performance, Tibia Parameter and Meat Quality of 1-to 21-d-old Broilers. Asian-Australasian Journal of Animal Sciences, 22(6), pp.857-864.
Han, J.C., Y.L. Wang, H.X Qu, F. Liang, J.L. Zhang, C.X. Shi, X.L Zhang, L. Li, Q. Xie (2012). One alphahydroxycholecalciferol improves growth performance, tibia quality, and meat color of broilers fed calcium- and phosphorus-deficient diets. Asian-Aust J Anim Sci.; 25:267-271.

Han, J.C., K. Ma, J. G. Wang, G.H. Chen, J.L. Zhang, H.X. Qu, Y.F. Yan, and Y.H. Cheng, (2015). Effects of Non-phytate phosphorus and 1a-hydroxycholecalciferol on growth performance, bone mineralization, and carcass traits of broiler chickens. Brazilian Journal of Poult. Sci, 17, pp.503-510.
Huss, D., G. Poynter and R. Lansford (2008). Japanese quail (Coturnix japonica) as a laboratory animal model. Lab animal, 37(11), pp.513-519.

Hutton, K.C., M.A., Vaughn, G., Litta, B.J. Turner, and J.D., Starkey 2014. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens. Journal of animal science, 92(8), pp.3291-3299.
Khan, S.H., R. Shahid, A.A. Mian, R. Sardar, and M.A. Anjum (2010). Effect of the level of cholecalciferol supplementation of broiler diets on the performance and tibial dyschondroplasia. Journal of Animal Physiology and Animal Nutrition, 94(5), pp.584-593.

Kheiri, F. and N. Landy (2019). The effects of dietary 1 -alpha-hydroxycholecalciferol individually or in combination with different levels of cholecalciferol on growth performance and tibia criteria in broiler chickens. Liv. Sci. 221: 172-176.
Kheiri, F., Jalali Haji Abadi, S.M.A., Poshtvar, M., N., Landy (2019). Influence of dietary $1 \alpha l$ phahydroxycholecalciferol, individually or in combination with microbial phytase in calcium and phosphorus deficient diets on performance and tibia parameter of Japanese quails (Coturnix japonica). Acta Sci. Anim. Sci.https://doi.org/10.4025/actascianimsci.v41i1.42540.

Landy, N. and M. Toghyani (2014). Evaluation the effects of dietary cholecalciferol substitution with 1alphahydroxycholecalciferol on performance and tibia parameters in broiler chickens. International Journal of Poultry Science, 13(9), p. 515.

Landy, N., M. Toghyani, R.B ahadoran, and S., Eghbalsaied (2015). The effects of 1alphahydroxycholecalciferol supplementation on performance and tibia parameter of broiler chickens. Research Opinions in Animal and Veterinary Sciences, 5(8), pp.342-347.

Leeson, S., and J.D. Summers (2001). Scott's Nutrition of the Chicken. 4th Edition. University Books, Ontario Canada. 210-223.
Lin, H., L.F. Wang, J.L. Song, Y.M. Xie, and Q.M., Yang (2002). Effect of dietary supplemental levels of vitamin A on the egg production and immune responses of heat-stressed laying hens. Poult. Sci, 81(4), pp.458-465.

Lofton, J. T., and J. H. Soares, Jr. (1986). The effects of vitamin D3 on leg abnormalities in broilers. Poultry Sci. 65:749-756.

Marques, R.H., R.A. Gravena, J.D.T.D. Silva, J. Roccon, J. Picarelli, F.H. Hada, S.A.D. Queiroz, and V.M.B. Moraes. (2011). Effect of supplementation of diets for quails with vitamins A, D and E on performance of the birds and quality and enrichment of eggs. Revista Brasileira de Zootecnia, 40, pp.1222-1232.

McDonald, P., R. a. Edwards ,J. F. D. Greenhalgh ,C. A. Morgan , L. A. Sinclair (1987). Animal Nutrition Book. 7 eddition.

Mendonça Jr, C.X., C.R.M. Almeida, A.V. Mori, and C. Watanabe (2002). Effect of dietary vitamin A on egg yolk retinol and tocopherol levels. Journal of Applied Poultry Research, 11(4), pp.373-378.

Metz, A.L.; M M Walser, W G Olson (1985). The interaction of dietary vitamin A and vitamin D related to skeletal development in the turkey poult. J Nutr 1985 Jul ;115(7):929-35.

Minvielle, F., 2004. The future of Japanese quail for research and production. World's Poultry Science Journal, 60(4), pp.500-507.

Mori, A.V., C.X. Mendonca Jr, C.R.M. Almeida, and M.C.G. Pita (2003). Supplementing hen diets with vitamins A and E affects egg yolk retinol and α-tocopherol levels. Journal of Applied Poultry Research, 12(2), pp.106-114.

Musapuor, A., J. Pourreza, A. Samie, and H.M. Shahrbabak (2005). Effects of cholecalciferol and phytase on phytate phosphorus utilisation in laying hens. International Journal Agriculture and Biology, 7, pp.643645.

National Research Council (1994). Nutrient Requirement of Poultry. 9th revised edition National Academic Press. Washington, DC, USA.

Okafor, B. B. and G. A. Kalio (2017). Effect of Graded Levels of Vitamin D3 (Cholecalciferol) on the Performance, Carcass and Organ Weights of Broilers Chickens. J. Agri. Eco. Res. Inter. 12:17.

Paul, R.C., N. Ahmad, M.A. Moinuddin, and N. Hasan (2010). Effects of administration of multivitamins and enzymes for broilers either singly or in combination on body weight and haematobiochemical parameters. Journal of the Bangladesh Agricultural University, 8(1), pp.39-44.
Perine, T.P., S.M. Marcato, A.C. Furlan, D.D.O. Grieser, V., Zancanela, C.E., Stanquevis, M.I. Benites and T.C. Euzébio (2016). Calcium requirement and vitamin D supplementation in meat-type quail at second stage of growth. Revista Brasileira de Zootecnia, 45, pp.655-660.

Roshdy, M., H. A. Khalil, A. M. Hanafy and M. E. Mady (2010). Productive and Reproductive Traits of Japanese Quails as affected by Two Housing System.Egypt. Poult. Sci. J. 30(1):55-67.

SAS. (2009). User's Guide. Version, 9.2, 2002-2009, SAS institute Inc., Cary, NC, USA.
Shellenberger, T.E. and J.M. Lee (1965). Effect of vitamin A on growth, egg production and reproduction of Japanese quail. Poult. Science, 45(4), pp.708-713.

Siyadati, S., M. Irani, , K. Ghazvinian, , A. Mirzaei-Aghsaghali, V. Rezaipoor, H. Fathi, K. Alipoor, S. ZamanzadGhavidel (2011). Effect of varying dietary energy to protein ratio on productive performance and carcass characteristics of Japanese quail. Annals. Biol. Res. 2 (1):149-155.
Stevens, V. I., R. Blair, and R. E. Salmon. (1984). Influence of maternal vitamin D3 carry-over on kidney 25hydroxyvitamin D3-1-hydroxylase activity of poults. Poult. Sci. 63:765-774.

Tarciso., Tizziani, R.F.M.D.O., Donzele, J.L., Donzele, A.D., Silva, J.C.L., Muniz, R.D.F., Jacob, G. Brumano, and L.F.T., Albino (2019). Reduction of calcium levels in rations supplemented with vitamin D3 or 25-OH-D3 for broilers. Revista Brasileira de Zootecnia, 48.

Uni, Z., G. Zaiger, O. Gal-Garber, M. Pines, I. Rozenboim, and R. Reifen (2000). Vitamin A deficiency interferes with proliferation and maturation of cells in the chicken small intestine. British Poultry Science, 41(4), pp.410-415.

Veltmann Jr, J.R., and L.S. Jensen (1985). Interaction between high dietary vitamin A and low dietary vitamin D3 in the chick and turkey poult. Nutrition reports international, 31(2), pp.299-308.

Veltmann, J. R., L. S. Jensen, and G. N. Rowland (1986). Excess dietary vitamin A in the growing chick: Effect on fat source and vitamin D. Poultry Sci. 65:153-163.
Vignale, K., E.S. Greene, J.V. Caldas, J.A. England, N. Boonsinchai, P. Sodsee, E.D. Pollock, S. Dridi, and C.N. Coon (2015). 25-hydroxycholecalciferol enhances male broiler breast meat yield through the mTOR pathway. The Journal of nutrition, 145(5), pp.855-863.

Vignale, K., E.S., Greene, J.V., Caldas, J.A., England, N. Boonsinchai, P. Sodsee, E.D. Pollock, S. Dridi and C.N. Coon (2015). 25-hydroxycholecalciferol enhances male broiler breast meat yield through the mTOR pathway. The Journal of nutrition, 145(5), pp.855-863.

Metwally et al.

Waldenstedt, L. (2006). Nutritional factors of importance for optimal leg health in broilers: a review. Animal Feed Science and Technology 126:291-307.

Yarger, J.G., C.A. Saunders, J.L. McNaughton, C.L. Quarles, B.W. Hollis, and R.W. Gray (1995). Comparison of dietary 25-hydroxycholecalciferol and cholecalciferol in broiler chickens. Poult. Sci.

Zanuzzi, C.N., F. Nishida, E.L. Portiansky, P.A. Fontana, E.J. Gimeno, and C.G. Barbeito (2012). Effects of Solanum glaucophyllum toxicity on cell proliferation and apoptosis in the small and large intestine of rabbits. Research in veterinary science, 93(1), pp.336-342.

أداء النمو وخصائص الذبيحة للسمـن الياباني متأئرا بإضافة جرعات عالية من فيتامين أ و د 3

> محمد متولِي أحمد¹ ـنورة احمد²ـ محمود الكيلاوى² قسم انتاج (لاو/جن-كلية الزراعةّ_جامعة اسبيوط1 ${ }^{1}$
> قسم انتاج الدواجن-كلية اللزراعة_جامعة الوالدى الجبدي² ${ }^{2}$

```
تم استخدام عدد مائة وثمانين طائر سمان غير مجنس عمر سبعة أيام في الار اسة الحالية بترتيب عاملي 2 2 3 3 (مستويان من فيتامين
```



```
                            المعاملة }6\mathrm{ حقق زيادة في وزن الجسم مقارنة بمعاملة الكکترول.
```



```
                            فيتامين أ }3000\mathrm{ وحدة دولية فيتامين د 3) في معاملة }6\mathrm{ زيادادة في وزن الجسم مقارنة بمعاملة الكنترول. 
```



```
                        مستوى من فيتامين أ (40000 وحدة دولية) زيادة (0) 0
```



```
    وحققت
```



```
                            القانصة.كما حقق مستوى 3000 وحدة دولية من فيتامين د ز زيادة معنوية في مكونات الذبيحة. 
    يمكن الاستتناج أن مستوى }40000\mathrm{ وحدة دولية / ( )
```



```
                                    فيتامين د }3\mathrm{ / كجم.
```

Table (1): The chemical composition of the experimental diets.

Ingredients	\%
Corn, Grains	53.00
Soybean Meal (44\%)	36.20
Vegetable oil	1.00
Corn gluten Meal (60\%)	6.40
Di calcium phosphate	2.05
Vit . Min. Premix*	0.30
Limestone	0.45
NaCl	0.30
DL-Methionine	0.15
L-Lysine HCl	0.15
TOTAL	100
Determined1 and calculated2 composition (\% as fed basis)	
Nutrient Determined	
Dry matter	85.82
Crude protein ${ }^{1}$	23.92
Ether extract ${ }^{1}$	3.51
Crude fiber ${ }^{1}$	4.02
Nutrient Calculated	0.172
Dry matter ${ }^{2}$	86.6
ME ($\mathrm{kcal} / \mathrm{kg}$) ${ }^{2}$	2920
Crude protein ${ }^{2}$	24.79
Ether extract ${ }^{2}$	3.46
Crude fiber ${ }^{2}$	3.86
Calcium ${ }^{2}$	0.76
Available phosphorus ${ }^{2}$	0.53
Lysine ${ }^{2}$	1.29
Methionine ${ }^{2}$	0.59
Total phosphorus ${ }^{2}$	0.8
* Vitamins and minerals mixture provide per kilogram of diet: Vitam	inyl acetate); 12000 IU; Vitamin
E (all rac-■-tocopheryl acetate); $10 I \mathrm{IU} ; \mathrm{k} 3 \mathrm{mg}$; Vit.D3, 2200 ICU ; riboflavin, 10 mg ; Ca pantothenate, 10 mg ; niacin, 20 mg ; Choline chloride, 500 mg ; Vitamin B12, $10 \square \mathrm{~g}$; Vitamin B6, 1.5 mg ; Thiamine (as thiamine mononitrate); 2.2 mg ; Folic acid, 1 mg ; D-biotin, $50 \square \mathrm{~g}$. Trace mineral (milligrams per kilogram of diet) Mn, $55 ; \mathrm{Zn}, 50 ; \mathrm{Fe}, 30 ; \mathrm{Cu}, 10 ; \mathrm{Se}, 0.1$ and Ethoxyquin 3 mg .	

Metwally et al.

Table (2): Body weight (g) of Japanese quail as affect by dietary vitamin A and vitamin D3.

Treatments	Body eight during the trial period					
	7 d	14 d	21 d	28 d		35 d
Vitamin A levels (IU)						
0	15.92 ± 0.20	48.86 ± 1.18	86.38 ± 2.46	$123.78^{\mathrm{b}} \pm 3.20$	$178.02^{\mathrm{b}} \pm 2.89$	203.94 ± 3.57
40000	15.94 ± 0.22	49.53 ± 1.52	92.13 ± 2.06	$143.72^{\mathrm{a}} \pm 1.50$	$189.02^{\mathrm{a}} \pm 1.85$	207.95 ± 2.61
Vitamin D levels (ICU)						
0	15.89 ± 0.26	49.34 ± 0.93	89.99 ± 1.95	131.14 ± 5.82	178.65 ± 4.88	$197.98^{\mathrm{b}} \pm 3.57$
1500	15.85 ± 0.23	49.02 ± 1.89	88.93 ± 3.54	136.71 ± 4.23	186.23 ± 2.48	$209.63^{\mathrm{a}} \pm 2.75$
3000	16.05 ± 0.30	49.23 ± 2.12	88.85 ± 3.64	133.40 ± 5.88	185.68 ± 3.05	$210.22^{\mathrm{a}} \pm 3.15$
Interactions						
T1	15.49 ± 0.14	48.55 ± 1.45	86.50 ± 1.76	$118.69^{\mathrm{b}} \pm 1.65$	$169.22^{\mathrm{b}} \pm 1.77$	$193.02^{\mathrm{b}} \pm 2.83$
T2	16.21 ± 0.31	49.19 ± 3.17	86.96 ± 6.71	$130.22^{\mathrm{ab}} \pm 6.63$	$183.48^{\mathrm{a}} \pm 4.78$	$210.03^{\mathrm{a}} \pm 5.30$
T3	16.07 ± 0.46	48.85 ± 2.12	85.69 ± 4.93	$122.44^{\mathrm{b}} \pm 6.44$	$181.36^{\mathrm{a}} \pm 3.87$	$208.78^{\mathrm{a}} \pm 5.19$
T4	16.30 ± 0.40	50.13 ± 1.26	93.49 ± 1.94	$143.59^{\mathrm{a}} \pm 3.40$	$188.07^{\mathrm{a}} \pm 5.19$	$202.95^{{ }^{\mathrm{a}}} \pm 5.56$
T5	15.49 ± 0.21	48.85 ± 2.77	90.91 ± 3.69	$143.21^{\mathrm{b}} \pm 1.89$	$188.97^{\mathrm{a}} \pm 0.56$	$209.23^{\mathrm{a}} \pm 3.11$
T6	16.03 ± 0.48	49.62 ± 4.23	92.00 ± 5.64	$144.36^{\mathrm{a}} \pm 3.40$	$190.00^{\mathrm{a}} \pm 3.57$	$211.67^{\mathrm{a}} \pm 4.55$

${ }^{a, b}$ Means in the same columns with different superscript are significant different (P$\left.\leq 0.05\right)$. T1: chicks were fed basel diet (control); T2: chicks were fed basel diet with 1500 ICU of Vit. D3; T3: chicks were fed basel diet with 3000 ICU of Vit. D3; T4: chicks were fed basel diet with 40,000 IU of Vit. A.;T5:chicks were fed basel diet with 40,000 IU of vitamin A + 1500 ICU of Vit.D3.;T6:chicks were fed basel diet with 40,000 IU of vitamin A +3000 ICU of Vit.D3.

Table (3): Body weight gain (g) of Japanese quail as affected by dietary vitamin A and vitamin D3 supplementation.

Treatments	Body weight gain				
	$7-14 \mathrm{~d}$	$7-21 \mathrm{~d}$	7-28d	$7-35 \mathrm{~d}$	7-42d
Vitamin A levels (IU)					
0	32.94 ± 1.20	70.46 ± 2.47	$107.86^{\mathrm{b}} \pm 3.16$	$162.57^{\mathrm{b}} \pm 2.89$	188.49 ± 3.57
40000	33.59 ± 1.60	76.19 ± 2.13	$127.78^{\mathrm{a}} \pm 1.57$	$173.57^{\mathrm{a}} \pm 1.84$	192.50 ± 2.61
Vitamin D levels (ICU)					
0	33.44 ± 0.94	74.09 ± 1.79	115.24 ± 5.65	163.19 ± 4.88	$182.53^{\mathrm{b}} \pm 3.57$
1500	33.17 ± 1.80	73.08 ± 3.50	120.86 ± 4.27	170.78 ± 2.47	$194.18^{\mathrm{a}} \pm 2.75$
3000	33.18 ± 2.35	72.80 ± 3.86	117.35 ± 6.00	170.23 ± 3.05	$194.77^{\mathrm{a}} \pm 3.15$
Interactions					
T1	33.05 ± 1.35	71.01 ± 1.70	$103.19^{\mathrm{b}} \pm 1.65$	$153.77^{\mathrm{b}} \pm 1.77$	$177.57^{\mathrm{b}} \pm 2.83$
T2	32.98 ± 3.02	70.75 ± 6.50	$114.01^{\mathrm{b}} \pm 6.35$	$168.03^{\mathrm{a}} \pm 4.78$	$194.58^{\mathrm{a}} \pm 5.30$
T3	32.78 ± 2.53	69.62 ± 5.29	$106.37^{\mathrm{b}} \pm 6.76$	$165.91^{\mathrm{a}} \pm 3.88$	$193.33^{\mathrm{a}} \pm 5.19$
T4	33.83 ± 1.57	77.19 ± 1.90	$127.29^{\mathrm{a}} \pm 3.42$	$172.63^{\mathrm{a}} \pm 5.19$	$187.50^{\mathrm{ab}} \pm 5.56$
T5	33.36 ± 2.66	75.42 ± 3.66	$127.72^{\mathrm{a}} \pm 1.99$	$173.52^{\mathrm{a}} \pm 0.55$	$193.78^{\mathrm{a}} \pm 3.11$
T6	33.58 ± 4.61	75.96 ± 6.04	$128.33^{\mathrm{a}} \pm 3.72$	$174.55^{\mathrm{a}} \pm 3.57$	$196.22^{\mathrm{a}} \pm 4.55$

${ }^{\bar{a}, b}$ Means in the same columns with different superscript are significant different ($P \leq 0.05$). T1: chicks were fed basel diet (control); T2: chicks were fed basel diet with 1500 ICU of Vit. D3; T3: chicks were fed basel diet with 3000 ICU of Vit. D3; T4: chicks were fed basel diet with 40,000 IU of Vit. A.;T5:chicks were fed basel diet with 40,000 IU of vitamin A + 1500 ICU of Vit.D3.;T6:chicks were fed basel diet with 40,000 IU of vitamin A +3000 ICU of Vit.D3.

Egyptian J. Nutrition and Feeds (2021)

Table (4): Feed consumption (g) of Japanese quail as affected by dietary vitamin A and vitamin D3 supplementation.

Treatments	Feed consumption during the trial period				
	7-14d	7-21d	7-28d	7-35d	7-42d
Vitamin A levels (IU)					
0	93.85 ± 4.10	$202.44{ }^{\text {b }} \pm 6.80$	$313.2{ }^{\text {b }} \pm 9.65$	$458.8{ }^{\text {b }} \pm 11.50$	$613.9{ }^{\text {b }} \pm 13.27$
40000	100.38 ± 6.23	$242.95{ }^{\text {a }} \pm 7.89$	$389.6{ }^{\text {a }} \pm 9.77$	$558.8^{\text {a }} \pm 9.76$	$723.5{ }^{\text {a }} \pm 10.62$
Vitamin D levels (ICU)					
0	90.77 ± 4.21	204.17 ± 12.35	328.5 ± 20.12	481.9 ± 22.19	635.8 ± 24.20
1500	100.26 ± 6.78	228.27 ± 12.07	355.6 ± 19.97	521.0 ± 25.50	682.2 ± 27.88
3000	100.32 ± 8.02	235.64 ± 9.99	370.1 ± 18.65	523.5 ± 26.18	688.2 ± 28.37
Interactions					
T1	89.48 ± 8.96	$180.26^{\text {c }} \pm 2.60$	$289.5{ }^{\text {c }} \pm 15.54$	$437.2{ }^{\text {b }} \pm 18.41$	$585.5^{\text {c }} \pm 18.89$
T2	96.92 ± 9.47	$204.87{ }^{\text {bc }} \pm 7.87$	$316.9{ }^{\text {c }} \pm 16.63$	$468.2{ }^{\text {b }} \pm 20.26$	$625.6^{\text {c }} \pm 22.88$
T3	95.13 ± 4.12	$222.18^{\text {ab }} \pm 6.45$	$333.2{ }^{\text {bc }} \pm 10.64$	$471.0{ }^{\text {b }} \pm 22.03$	$630.5^{\text {c }} \pm 24.97$
T4	92.05 ± 2.59	$228.08^{\text {ab }} \pm 13.56$	$367.6^{\text {ab }} \pm 16.08$	$526.7^{\text {a }} \pm 11.04$	$686.0{ }^{\text {b }} \pm 6.80$
T5	103.59 ± 11.35	$251.67^{\mathrm{a}} \pm 10.88$	$394.2{ }^{\text {a }} \pm 14.96$	$573.9{ }^{\text {a }} \pm 7.20$	$738.7^{\text {ab }} \pm 12.90$
T6	105.51 ± 16.67	$249.10^{\mathrm{a}} \pm 16.63$	$407.1{ }^{\text {a }} \pm 16.05$	$575.9{ }^{\text {a }} \pm 13.88$	$745.9^{\mathrm{a}} \pm 8.52$

${ }^{a, b}$ Means in the same columns with different superscript are significant different ($P \leq 0.05$). T1: chicks were fed basel diet (control); T2: chicks were fed basel diet with 1500 ICU of Vit. D3; T3: chicks were fed basel diet with 3000 ICU of Vit. D3; T4: chicks were fed basel diet with 40,000 IU of Vit. A.;T5:chicks were fed basel diet with 40,000 IU of vitamin A + 1500 ICU of Vit.D3.;T6:chicks were fed basel diet with 40,000 IU of vitamin A +3000 ICU of Vit.D3.

Table (5): Feed conversion ratio of Japanese Quail as affected by dietary vitamin A and vitamin D3 supplementation.

Treatments	Feed conversion ratio				
	7-14d	7-21d	7-28d	7-35d	7-42d
Vitamin A levels (IU)					
0	2.90 ± 0.22	2.90 ± 0.14	2.92 ± 0.11	$2.82{ }^{\text {b }} \pm 0.06$	$3.26{ }^{\text {b }} \pm 0.07$
40000	3.13 ± 0.39	3.23 ± 0.20	3.05 ± 0.095	$3.22^{\text {a }} \pm 0.06$	$3.76{ }^{\text {a }} \pm 0.05$
Vitamin D levels (ICU)					
0	2.73 ± 0.18	2.75 ± 0.13	2.85 ± 0.11	2.95 ± 0.08	3.48 ± 0.11
1500	3.12 ± 0.39	3.15 ± 0.20	2.94 ± 0.13	3.05 ± 0.13	3.52 ± 0.17
3000	3.19 ± 0.52	3.29 ± 0.26	3.17 ± 0.12	3.07 ± 0.12	3.53 ± 0.13
Interactions					
T1	2.74 ± 0.38	2.54 ± 0.09	2.81 ± 0.20	$2.84{ }^{\text {b }} \pm 0.11$	$3.30{ }^{\text {bc }} \pm 0.12$
T2	2.73 ± 0.14	2.96 ± 0.17	2.89 ± 0.13	$3.05{ }^{\text {ab }} \pm 0.07$	$3.66{ }^{\text {ab }} \pm 0.08$
T3	3.04 ± 0.58	2.93 ± 0.23	2.79 ± 0.19	$2.79{ }^{\text {b }} \pm 0.13$	$3.22^{\text {c }} \pm 0.19$
T4	3.21 ± 0.64	3.37 ± 0.32	3.09 ± 0.16	$3.31{ }^{\text {a }} \pm 0.05$	$3.82{ }^{\text {a }} \pm 0.12$
T5	2.93 ± 0.24	3.22 ± 0.23	3.15 ± 0.14	$2.84{ }^{\text {b }} \pm 0.09$	$3.26{ }^{\text {c }} \pm 0.09$
T6	3.45 ± 1.12	3.36 ± 0.52	3.18 ± 0.22	$3.30^{\mathrm{a}} \pm 0.12$	$3.81{ }^{\text {a }} \pm 0.09$

${ }^{a, b}$ Means in the same columns with different superscript are significant different $(P \leq 0.05)$. T1: chicks were fed basel diet (control); T2: chicks were fed basel diet with 1500 ICU of Vit. D3; T3: chicks were fed basel diet with 3000 ICU of Vit. D3; T4: chicks were fed basel diet with 40,000 IU of Vit. A.;T5:chicks were fed basel diet with 40,000 IU of vitamin A + 1500 ICU of Vit.D3.;T6:chicks were fed basel diet with 40,000 IU of vitamin A +3000 ICU of Vit.D3.

Table (6): Carcass constituents (g) of Japanese Quail as affected by dietary vitamin A and vitamin D3 supplementation.

Treat.	Live BW	Carcass constituents										
		Carcas W	Liver W	Gizard W	Spleen W	Stoma.W	Carcass Net Weight	Dresing \%	Liver \%	Gizard, \%	Splen \%	$\begin{aligned} & \text { Stomac, } \\ & \% \end{aligned}$
VitaminA levels (IU)												
0	216.50 ± 3.8	152.98 ± 2.6	5.26 ± 0.3	4.02 ± 0.10	0.14 ± 0.01	0.82 ± 0.0	162.40 ± 2.8	75.12 ± 0.7	2.40 ± 0.13	1.86 ± 0	0.06 ± 0.	0.38 ± 0.
4000	211.61 ± 4.5	152.99 ± 2.9	4.63 ± 0.2	3.84 ± 0.12	0.14 ± 0.01	0.86 ± 0.0	161.61 ± 3.1	76.59 ± 0.8	2.16 ± 0.08	1.81 ± 0	0.06 ± 0	0.40 ± 0
Vitamin D levels (ICU)												
0	210.30 ± 4.7	152.41 ± 3.5	4.87 ± 0.4	4.09 ± 0.12	0.13 ± 0.01	0.82 ± 0.0	161.50 ± 3.8	76.88 ± 1.0	2.27 ± 0.17	$1.94{ }^{\text {a }} \pm 0$	0.06 ± 0	0.39 ± 0
1500	221.64 ± 4.4	157.06 ± 2.7	5.30 ± 0.3	3.93 ± 0.10	0.13 ± 0.01	0.89 ± 0.0	166.42 ± 2.8	75.28 ± 1.0	2.38 ± 0.11	$1.78{ }^{\text {b }} \pm 0$	0.06 ± 0	0.40 ± 0.
3000	210.22 ± 5.9	149.49 ± 3.7	4.69 ± 0.3	3.77 ± 0.16	0.17 ± 0.02	0.80 ± 0.0	158.12 ± 4.1	75.39 ± 0.8	2.20 ± 0.10	$1.79^{\mathrm{b}} \pm 0$	0.08 ± 0	0.38 ± 0
Interactions												
T1	$201.29^{\text {b }} \pm 4$	$145.87^{\text {ab }} \pm 3$	$4.54{ }^{\text {b }} \pm 0$	4.03 ± 0.1	0.11 ± 0.0	0.76 ± 0.0	$154.57^{\text {ab }} \pm 3$.	76.83 ± 1.	$2.21{ }^{\text {ab }} \pm 0$.	$2.00^{\text {a }} \pm 0$	$0.05{ }^{\text {ab }} \pm 0$	0.38 ± 0
T2	$227.79^{\text {a }} \pm 5$	$157.57^{\text {ab }} \pm 4$	$6.13^{\text {a }} \pm 0$	4.14 ± 0.1	0.15 ± 0.0	0.89 ± 0.0	$168.00^{\mathrm{a}} \pm 4$.	73.78 ± 1.	$2.69{ }^{\text {a }} \pm 0.1$	$1.82{ }^{\text {ab }} \pm 0$	$0.06{ }^{\text {ab }} \pm 0$	0.39 ± 0
T3	$220.41^{\text {ab }} \pm 7$	$155.47^{\text {ab }} \pm 4$	$5.10^{\text {ab }} \pm 0$	3.88 ± 0.2	0.16 ± 0.0	0.79 ± 0.0	$164.63^{\text {ab }} \pm 5$.	74.73 ± 0.	$2.28{ }^{\text {ab }} \pm 0$.	$1.75{ }^{\text {b }} \pm 0$	$0.07^{\text {ab }} \pm 0$	0.36 ± 0
T4	$219.32^{\text {ab }} \pm 7$	$158.93{ }^{\text {a }} \pm 5$	$5.18{ }^{\text {ab }} \pm 0$	4.15 ± 0.2	0.14 ± 0.0	0.88 ± 0.0	$168.42^{\mathrm{a}} \pm 6$.	76.92 ± 1.	$2.32^{\text {ab }} \pm 0$.	$1.88{ }^{\text {ab }} \pm 0$	$0.06{ }^{\text {ab }} \pm 0$	0.40 ± 0
T5	$215.48^{\text {ab }} \pm 6$	$156.54^{\text {ab }} \pm 3$	$4.45{ }^{\text {b }} \pm 0$	3.71 ± 0.1	0.11 ± 0.0	0.87 ± 0.0	$164.82^{\text {ab }} \pm 3$.	76.79 ± 1.	$2.06{ }^{\text {b }} \pm 0.0$	$1.73{ }^{\text {b }} \pm 0$	$0.05{ }^{\text {b }} \pm 0$	0.40 ± 0
T6	$200.02^{\text {b }} \pm 8$	$143.50{ }^{\text {b }} \pm 5$	$4.27^{\mathrm{b}} \pm 0$	3.65 ± 0.2	0.17 ± 0.0	0.80 ± 0.0	$151.60^{\mathrm{b}} \pm 5$	76.04 ± 1.	$2.10{ }^{\text {b }} \pm 0.1$	$1.82{ }^{\text {ab }} \pm 0$	$0.08^{\text {a }} \pm 0$	0.39 ± 0

