NUTRITIONAL AND ECONOMICAL IMPACT OF USING SUPER STARTER DIETS IN FEEDING BROILER CHICKENS

A.I. El-Faham¹; A.G. Abdallah²; M.H.S. El-Sanhoury¹and A.S.M. Arafa²
¹Poultry Production Dept., Fac. of Agric., Ain Shams Univ., Egypt.

SUMMARY

An experiment was conducted to study the effect of feeding recommended (23%, Diet₁) or high (25%, super starter, Diet₁) crude protein in starter diets on productive performance, carcass characteristics and economical efficiency of Hubbard broiler chickens. A total of 225, day old Hubbard broiler male chicks were randomly distributed into 5 treatments at (1-35) days of age, each with three replicates of 15 birds each. The five treatments were: T₁ Control group, chicks fed (Diet₁) ad-libitum the other treatments from T₂ till T₅, chicks were fed (Diet₁) at different quantities being 125g, 250g, 375g and 500g/chick, respectively followed by (Diet₁) to the end of starter period (14 days of age). During grower and finisher periods, all chicks were fed recommended diets at these phases. At the end of experiment at 35 days of age, 4 broilers chicken per treatment were slaughtered and evaluated for carcass traits. The results indicate that: Body weight, body weight gain and feed intake were linearly increased, whereas feed conversion ratio decreased as super starter diet increased, during overall period (1-35 days of age). The best values of body weight gain, feed conversion ratio, protein and energy conversion ratio were observed for chickens fed 500g super starter diet compared with other dietary treatments. In most cases differences between treatments were significant (P<0.01). Carcass characteristics of chicks fed super starter diet, added at different levels had no effects on carcass characteristics. The best economical efficiency value were demonstrated when broiler chickens fed (500g Diet/chick) super starter diet and the values was 33.09% more when compared to that of chicks fed control diets. In conclusion, feeding broiler chickens super starter diet at level of (500g/chick) support and enhance productive performance and economical efficiency.

Keywords: Broiler performance, carcass characteristics, super starter diet, economic efficiency.

INTRODUCTION

Global poultry meat and egg production as well as trade with poultry products have shown a remarkable dynamic during the last 35 years. Between 1970 and 2005 poultry meat increased faster than beef and veal or pigment production Windhorst (2006). Therefore, a better understanding and updating of the nutritional requirements of broiler chickens under Egyptian conditions is needed in order to reach its potential in poultry industry.

Energy and protein are an important nutritional, representing majority of total cost of the diets and the most economically factors affecting profitability for boiler chickens (Sterling et al., 2005 and El-Faham et al., 2016a).

Increasing profitability of broiler chickens production is dependent on reducing input costs and/or increasing production output. Any reduction in feed cost/chickens or improved in feed efficiency without compromising growth rate or carcass quality can have a significant positive economic impact on broiler chickens production (Sterling et al., 2005).

Several experiments with broiler chicks or quails have shown that performance is adversely affected with low crude protein diets and investigated the potential reasons for decreasing performance and economic efficiency (Mosaad and Iben, 2009; Malomo and Olutade, 2013; Folorunso et al., 2014 and Ali, 2006). Similar results were observed by (Bregendahl et al., 2002; Sterling et al., 2005 and Waldroupet al. 2005) indicated that, rate and efficiency of growth is lowered and carcass composition becomes inferior in broilers fed diets in which crude protein has been lowered by more than 2.5% of the chicken requirements, even when all known nutrient requirements are supplemented such as amino acids. On the other hand, some researcher’s studies had found that reducing dietary crude protein does not affect growth performance and carcass traits (Parr and Summaers, 1991, Moran and Stilborn, 1996, Saleh 2016 and El-Faham et al., 2016). Therefore, in the present study, an experiment was conducted to investigate the
Effect of feeding recommended or high crude protein in starter diets on productive performance, carcass characteristics and economic efficiency of Hubbard broiler chickens.

MATERIALS AND METHODS

Birds and management: This study was conducted at a private local broiler farm, Monufia governorate. A total number of 225 Hubbard broiler male chicks, day old, were randomly allotted to 5 dietary treatments (45 chicks per treatment) in 3 replicates (15 chicks/replicate). Chicks were housed in battery cages, kept under similar environmental and managerial conditions during 1-35 days of age. Feed and water were offered ad libitum all over the experimental period.

The experimental diets:

Two starter diets were formulated to contain (23.01% CP with 3046 kcal/kg; starter, Diet₁) (25.01% CP with 2918 kcal/kg; super starter, Diet₂) for starter phase (1-14) days of age, while during grower phase (15-28d) chicks were fed (21.01% CP with 3159 kcal/kg, Diet₃) and during finisher phase (29-35d) chick fed (19.04% CP with 3238 kcal/kg, Diet₄). Methionine, Lysine and mixture of vitamins and minerals were added to cover the requirement of Hubbard chicks according to NRC, 1994.

Chicks were distributed into five treatments in starter period as follows: T₁: Control group, chicks fed (Diet₁) ad-libitum and T₂-T₅ groups, chicks fed 125g, 250g, 375g and 500g/ chicks (Diet₂) followed by (Diet₁) to the end of starter period (14) days of age then all experimental chicks fed grower and finisher diets (Diet₃-₄). Feed ingredients and chemical analysis of the diets used in this experiment are shown in Table (1).

Data collection:

Growth performance parameters: Live body weight and feed intake of broiler chicks were recorded. While, body weight gain and feed conversion ratio were calculated. Performance index was measured according to North (1981), where production efficiency factor according to Emmert (2000).

Also, the protein conversion ratio (PCR) and energy conversion ratio (ECR) were calculated for overall period.

Carcass characteristics:

At the end of experimental period (35 days of age), four broilers chicks per treatments were randomly taken and slaughtered. Data of carcass traits were calculated as % of live body weight (Carcass% and giblets%).

Economical efficiency:

The economical efficiency for broiler chicks (meat production) was calculated according to the price of local market for feed ingredients and selling price of line broiler chickens at the time of the experimental (March/2017). Economical efficiency = the net revenue/total cost.

Statistical analysis:

Statistical analysis was conducted using the General linear Model (GLM) procedure of SAS (2004). Means were compared using Duncan’s Multiple Range Test (Duncan, 1955) and level of significance was set at minimum of (P≤0.05). The statistical model was

\[Y_{ij} = \mu + T_i + e_{ij} \]

Where:

- \(Y_{ij} \) = observation of the parameter measured.
- \(\mu \) = overall mean.
- \(T_i \) = effect of treatment (i : 1 to 5).
- \(e_{ij} \) = random error.
RESULTS AND DISCUSSION

Productive Performance:

Live Body weight (LBW) and body weight gain (BWG):

There were a significant difference (P<0.01) in LBW and BWG values due to experimental treatments (Table 2). Results show that the worst values of LBW and BWG had been obtained by broiler chicks fed control diet (T1) compared with the other treatments (T2 till T6). The explanation of that could be related to the fact that, Excess protein level in super starter (Diet2) improve BWG in Comparison with the control diet (Diet1) or Diet2 (super starter) was formulated to meet the optimum nutrient requirements for broiler chicks based on the recommendations of NRC (1994).

On the other hand, chicks fed 375g or 500g from Diet2 (T4 and T5) gave higher LBW (2155g and 2226.67g respectively). Compared to those fed lower quantity of diet2 (T3 and T6), Being 2028.33 and 2046.67 (g) respectively and the differences failed to be significant.

In the same trend, responses of chicks fed either (375g Diet2 T4) or 500g Diet2 (T5) significantly higher BWG than those fed the two other lower levels of Diet2 (T2 and T3) and the difference were statistically significant compared with those fed control diet (T1). These results are agreement with those obtained by Gheisari et al. (2011) who reported that feeding growing quail diet contained high protein level (24%) improved body weight as compared with quail received the lower protein level (21%CP). Moreover, El- Faham et al. (2016a,b) and Karman et al. (2008), stated that live body weight and weight gain of broiler chickens was linearly decreased as dietary protein and energy decreased during experimental periods. On the other hand, these findings were in contrast with the results obtained by Saleh (2016) who reported that feeding (Cobb Avian, 48) broilers on 1% lower protein diets than the strain recommendation, at constant ME, had not adversely affected the growth performance.

In another study conducted by Abd- Elsamee (2001 and 2002) found that chicks fed low protein diets (ranged from 21 to 17% CP) supplemented with essential amino acids had similar growth rate and feed efficiency as those fed 23% CP diet. The same observation was reported by Harms and Russell (1993) on laying hens.

Feed intake (FI) and feed conversion ratio (FCR):

The obtain data show that, there were significant differences in feed intake and feed conversion ratio among treatment during whole overall period (1-35) days of age. It was obvious from (Table 2) that feed intake per bird (g) was significantly (P<0.01) increased by feeding (Diet2), (T2-T3) compared with those fed control diet (T1). The increase in feed consumption was ranged between 9.2 and 18.5%, with significant differences between treatments.

In the same order, the values of FCR indicted significant differences between birds fed 250g, 375g and 500g Diet2 (T3, T4 and T5), compared with those fed control (T1) or 125g Diet2(T2). The best FCR was detected for the birds fed 500g Diet2 (T5, 1.59). On the other hand, the worst FCR were found in birds fed the control diet or 125g Diet2 being the same rate 1.64, respectively.

Which could be to the highest body weight gain, since birds fed (T3) diet were more efficient in converting their food into body weight gain compared with those fed control diets (T1). Similar results were observed by Kamran et al. (2008) and El-Faham et al. (2016a,b) in broiler chickens and Harms and Russell (1993) in laying hens and Abdel-Azeem et al. (2005)in Japanese quail and Gheisari et al. (2011) on growing quail.

Growth rate:

Significant differences (P<0.05) were observed in growth rate between experimental treatments during whole experimental period (Table 2) where, feeding chicks with 375 and 500g Diet2 (T4 and T5) showed the highest (1.93) growth rate followed by those fed 125g and 250g Diet2(T2,3, 1.92), while chickens fed control diet (T1) had the lowest value being (1.91) and in most cases differences were significant.

Protein conversion ratio (PCR) and energy conversion ratio (ECR):

The results concerning the effect of dietary treatments on the PCR and ECR are shown in Table (3). The values of PCR and ECR indicated significant differences between birds fed 250g, 375g and 500g Diet2, compared with those fed control T1 or fed 125g Diet2 (T2) diets. The best values were detected for
the broiler chicks fed T₂ diet. The corresponding rates were 0.33 and 5.0 respectively. On the other hand, the worst PCR and ECR values were found in birds fed control diets (being 0 and 5.36, respectively).

Performance index (PI) and productive efficiency factors (PEF):

The obtained data showed that, there were significant differences in PI and PEF among various treatments (from T₁ till T₅) during the studied period (1-35 days). Data in Table (3) indicated that PI and PEF values were significantly increased by increasing super starter diets (Diet₂) for broiler chickens (from T₂-T₅) as compared to those fed control diets (T₁). In addition, chickens fed (T₃) diets gave the highest values (139.74 and 399.26) compared to those fed control diets being 111.41 and 318.32, respectively, however, differences failed to be significant. Similar observations were reported by Awad et al. (2014), who reported that significant differences were observed in PI between experimental treatments due to varying ME, CP levels and duckling sex during experiment periods (2-20 wks). On the other hand, these findings are in contrast with the results obtained by Kout El-Kloub et al. (2010) who reported that PIU values were insignificantly decreased by increasing both ME and CP levels in Domyati duckling diets during 0-12wks, of age.

Carcass characteristics:

Table (4) shows the effect of super starter diet₂ on some carcass characteristics for the male chickens at the end of 35 days of age. Experimental treatments (T₂-T₅) had no significant effect on studied parameters compared with control (T₁). The corresponding values for dressed carcass percentages ranged between 64.17 and 66.22%, while giblets percentages (liver + gizzard + heart) percentages ranged between 4.10 and 4.55%. In addition, chickens fed control diets gave numerically the lowest dressed carcass% (64.17) compared to those fed different dietary treatments from T₂- T₅, being 66.22, 65.19, 65.91 and 65.49 respectively and differences among treatments were insignificant. Similar observations were reported by other investigators Malomoand Olutade (2013), Abd-Elsamee et al. (2014), El-Faham et al. (2015 and 2016), they concluded that no significant different in carcass characteristics for the broiler chicks feeding low protein diet or different ME levels.

Economical efficiency:

Data presented in Table (5) show the economical efficiency of the different dietary treatments (T₁-T₅) and money returned per chicken at the end of experimental period as affected by different levels of super starter diet₂. Live body weight, feed intake and feed cost are generally among the most important factors involved in achieve maximum profit from meat production. Results show that, the lowest values of net return (LE) and economical efficiency were recorded for the control treatment (T₁), being 13.84 and 43.33, respectively. While the highest values were recorded for (T₅) treatment and the corresponding values were 20.36 and 57.67 respectively. Moreover, feeding super starter diet₂ by different levels from T₂ till T₅ gave the highest relative economic efficiency and the corresponding values were 114.16, 120.57, 126.52 and 133.09 respectively.

CONCLUSION

From the present results, it could be stated that, feeding Hubbard broiler chicks super starter diet at (500g/chick), would have a positive effect on productive performance and economical efficiency, without any adverse effect on carcass characteristics.

REFERENCES

تأثير الفضلات والاقتصادي لاستخدام علیقة السبز بادئ في تغذية بذور التسوين

أحمد إبراهيم الفحص وعهد جاد محمد عبد الله ومراد حامد شكر السنوسي وآحمد صبري محمد عرفة

قسم إنتاج الدواجن - كلية الزراعة - جامعة عين شمس - مصر
قسم بحوث تغذية الدواجن - معهد بحوث تغذية الدواجن - مركز البحوث الزراعية - جيزة - مصر

أجريت هذه الدراسة لتعرف على تأثير التغذية على علیقة قياسية (33% - علیقة - بادئ) أو مرتفعة (25% علیقة – سهرب بادئ)

في المحتوى من البروتين الحاصل على الأداء الإنتاجي وصفات البيضاء والعاد والأقتصادي للكتاكيات التسمن.

استخدم في هذه التجربة 245 كتكوت ذكر عمر يوم سالآة البلدة وزعت على 5 معاملات غذائية بكل معاملة 3 مكررات بكل منها.

- المعاملة الأولية: تغذت على علیقة كتكرون (33% بروتين)
- المعاملة الثانية: تغذت على علیقة مرتفعة البروتين (25% بروتين) بمعدل 125 جم/طائر
- المعاملة الثالثة: تغذت على علیقة مرتفعة البروتين (25% بروتين) بمعدل 150 جم/طائر
- المعاملة الرابعة: تغذت على علیقة مرتفعة البروتين (25% بروتين) بمعدل 200 جم/طائر
- المعاملة الخامسة: تغذت على علیقة مرتفعة البروتين (25% بروتين) بمعدل 300 جم/طائر

- استلمت علیقة الكتاكيات بالمعاملات من الثانية حتى الحساسية على علیقة حتى نهاية فترة البقاء (14 يوم).

- غذت الكتاكيات النموذجية والتي على الاعتاجات الغذائية للسالة من المعاملة الأولى حتى الشمس على علیقة النامى (15-16 يوم)

الناحي (249 يوم).

وكان النتائج المنحول على كلالتي:

1. زيادة الوزن الحي والوزن الكتب وتسلاك الطف وتحسن معدل التحويل الغذائي زيادة كمية السور بادئ المقدمة لدارؤ التسمن.

2. أفضل قيم للاداء الإنتاجي (الوزن المكتسب ومعدل التحويل الغذائي ومعدل تحويل البروتين وطاقة) سجلت للكتاكيات المعززة على علیقة كتب كتكرون 35 جرام طائر بدارؤ وعالاورت في المعاملات الأخرى.

3. لم تتأثر معنوي جميع قيم النموذجية نسبية لوزن الأوزن الحي للبروتين (الذبحة، الجوانب، شبه، قبضة) بالمعاملات الغذائية المختلفة.

4. أفضل قيم للكتاكيات الإنتاجية سجلت للكتاكيات المعززة على 50 جرام طائر سوري بدارؤ وقادرة الإنتاجية الإجمالي زادت بمعدل 43.9 (23.0) معالجة للكتاكية المعززة على علیقة كتكرون.

الخلاصة: تغذية كتاكية بدارؤ التسمن على علیقة سوري بادئ معجل (5.5 كجم/ طائر) أثناء فترة البقاء يحسن الأداء الإنتاجي والعائد الاقتصادي.
Table (1): Feed ingredients and chemical analyses of experimental diets.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Experimental Diets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starter (Diet 1)</td>
</tr>
<tr>
<td>Yellow Corn Grains</td>
<td>51.55</td>
</tr>
<tr>
<td>Soy Bean Meal (44%)</td>
<td>35.00</td>
</tr>
<tr>
<td>Corn Gluten Meal (60%)</td>
<td>5.20</td>
</tr>
<tr>
<td>Limestone (CaCO₃)</td>
<td>1.35</td>
</tr>
<tr>
<td>Di-Ca Phosphate</td>
<td>1.90</td>
</tr>
<tr>
<td>Salt (NaCl)</td>
<td>0.40</td>
</tr>
<tr>
<td>Premix*</td>
<td>0.30</td>
</tr>
<tr>
<td>Soy Oil</td>
<td>3.50</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.31</td>
</tr>
<tr>
<td>Lysine –HCl</td>
<td>0.32</td>
</tr>
<tr>
<td>Anti-Oxidant</td>
<td>0.17</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Chemical Analysis (Calculated)

- Crude Protein %: 23.01, 25.01, 21.01, 19.04
- ME Kcal/ Kg diet: 3046, 2918, 3159, 3238
- Calcium %: 1.07, 1.06, 0.90, 0.85
- Available Phosphorus %: 0.51, 0.49, 0.45, 0.42
- Lysine %: 1.45, 1.44, 1.25, 1.10
- Methionine & Cysteine %: 0.69, 0.66, 0.60, 0.54
- Price/ Ton (L.E.): 6707, 6696, 6449, 6199

*Each 3 Kg of premix contains: Vitamins: A: 12000000 IU; Vitamins; D3 2000000 IU; E: 10000 mg; K3: 2000 mg; B1:1000 mg; B2: 5000 mg; B6:1500 mg; B12: 10 mg; Biotin: 50 mg; Choline chloride: 250000 mg; Pantothenic acid: 10000 mg; Nicotinic acid: 30000 mg; Folic acid: 1000 mg; Minerals: Mn: 60000 mg; Zn: 50000 mg; Fe: 30000 mg; Cu: 10000 mg; I: 1000 mg; Se: 100 mg and Co: 100 mg.

According to NRC, 1994.

Table (2): Effect of different dietary treatments on productive performance.

<table>
<thead>
<tr>
<th>Items</th>
<th>Dietary Treatments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live body weight (g)</td>
<td></td>
<td>1830.00</td>
<td>2028.33</td>
<td>2046.67</td>
<td>2155.00</td>
<td>2226.67</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>±47.25</td>
<td>±47.25</td>
<td>±28.91</td>
<td>±24.66</td>
<td>±14.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td></td>
<td>1790.00</td>
<td>1988.33</td>
<td>2006.67</td>
<td>2115.00</td>
<td>2186.67</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>±47.25</td>
<td>±47.25</td>
<td>±28.91</td>
<td>±24.66</td>
<td>±14.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed intake (g)</td>
<td></td>
<td>2940.67</td>
<td>3261.67</td>
<td>3211.00</td>
<td>3402.33</td>
<td>3484.33</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>±71.05</td>
<td>±82.89</td>
<td>±57.76</td>
<td>±38.30</td>
<td>±41.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed conversion ratio (feed/ gain)</td>
<td></td>
<td>1.64</td>
<td>1.64</td>
<td>1.60</td>
<td>1.61</td>
<td>1.59</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth rate</td>
<td></td>
<td>1.91</td>
<td>1.92</td>
<td>1.92</td>
<td>1.93</td>
<td>1.93</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.01</td>
<td>±0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a, b, c, d Means within the same row with different superscripts are significantly different.

Sig. = Significance, ** (P≤0.01), * (P≤0.05).
Table (3): Effect of different dietary treatments on protein and energy conversion ratio (PCR, ECR), performance index (PI) and production efficiency factor (PEF).

<table>
<thead>
<tr>
<th>Items</th>
<th>Dietary Treatments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR: Protein conversion ratio (g protein/ g gain)</td>
<td></td>
<td>0.35±0.01</td>
<td>0.35±0.01</td>
<td>0.34±0.01</td>
<td>0.34±0.01</td>
<td>0.33±0.01</td>
<td>*</td>
</tr>
<tr>
<td>ECR: Energy conversion ratio (Kcal/ g gain)</td>
<td></td>
<td>5.36±0.08</td>
<td>5.23±0.04</td>
<td>5.08±0.01</td>
<td>5.06±0.01</td>
<td>5.00±0.01</td>
<td>**</td>
</tr>
<tr>
<td>Performance Index (PI)</td>
<td></td>
<td>111.41±3.35</td>
<td>123.66±1.80</td>
<td>127.90±1.38</td>
<td>133.96±1.60</td>
<td>139.74±0.38</td>
<td>**</td>
</tr>
<tr>
<td>Production Efficiency Factor (PEF)</td>
<td></td>
<td>318.32±9.59</td>
<td>353.31±5.15</td>
<td>365.44±3.93</td>
<td>382.76±4.57</td>
<td>399.26±1.10</td>
<td>**</td>
</tr>
</tbody>
</table>

*a, b, c Means within the same row with different superscripts are significantly different. Sig. = Significance ** (P≤0.01), * (P≤0.05). 1: North (1981); 2: Emmert (2000).

Table (4): Effect of dietary treatments on some carcass characteristics.

<table>
<thead>
<tr>
<th>Items</th>
<th>Dietary Treatments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressed carcass %</td>
<td></td>
<td>64.17±0.35</td>
<td>66.22±0.29</td>
<td>65.19±1.07</td>
<td>65.91±0.41</td>
<td>65.49±0.99</td>
<td>NS</td>
</tr>
<tr>
<td>Liver %</td>
<td></td>
<td>2.68±0.24</td>
<td>2.47±0.29</td>
<td>2.84±0.66</td>
<td>2.96±0.24</td>
<td>2.52±0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Gizzard %</td>
<td></td>
<td>1.26±0.03</td>
<td>1.27±0.03</td>
<td>1.10±0.04</td>
<td>1.05±0.01</td>
<td>1.04±0.02</td>
<td>NS</td>
</tr>
<tr>
<td>Heart %</td>
<td></td>
<td>0.56±0.02</td>
<td>0.52±0.01</td>
<td>0.51±0.04</td>
<td>0.52±0.04</td>
<td>0.52±0.02</td>
<td>NS</td>
</tr>
<tr>
<td>Giblets * %</td>
<td></td>
<td>4.50±0.24</td>
<td>4.26±0.37</td>
<td>4.45±0.58</td>
<td>4.53±0.25</td>
<td>4.09±0.09</td>
<td>NS</td>
</tr>
</tbody>
</table>

*Giblets = Liver + Gizzard + Heart

Table (5): Effect of different dietary treatments on some economic traits.

<table>
<thead>
<tr>
<th>Items</th>
<th>Dietary Treatments</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live body weight (Kg)</td>
<td></td>
<td>1.83±0.04</td>
<td>2.03±0.03</td>
<td>2.05±0.02</td>
<td>2.15±0.02</td>
<td>2.22±0.01</td>
<td></td>
</tr>
<tr>
<td>Average feed intake (Kg)</td>
<td></td>
<td>2.94±0.06</td>
<td>3.26±0.08</td>
<td>3.21±0.05</td>
<td>3.40±0.03</td>
<td>3.48±0.04</td>
<td></td>
</tr>
<tr>
<td>Feed Cost (LE)</td>
<td></td>
<td>18.91±0.44</td>
<td>20.92±0.50</td>
<td>20.60±0.35</td>
<td>21.79±0.25</td>
<td>22.30±0.25</td>
<td></td>
</tr>
<tr>
<td>Total Cost (LE) #</td>
<td></td>
<td>31.91±0.44</td>
<td>33.92±0.50</td>
<td>33.60±0.35</td>
<td>34.79±0.25</td>
<td>35.30±0.25</td>
<td></td>
</tr>
<tr>
<td>Total Return (LE)</td>
<td></td>
<td>45.75±1.18</td>
<td>50.71±0.97</td>
<td>51.17±0.72</td>
<td>53.87±0.61</td>
<td>55.66±0.36</td>
<td></td>
</tr>
<tr>
<td>Net Return (LE)</td>
<td></td>
<td>13.84±0.77</td>
<td>16.79±0.48</td>
<td>17.56±0.37</td>
<td>19.08±0.36</td>
<td>20.36±0.11</td>
<td></td>
</tr>
<tr>
<td>Economic Efficiency</td>
<td></td>
<td>43.33±1.92</td>
<td>49.47±0.77</td>
<td>52.24±0.57</td>
<td>54.83±0.67</td>
<td>57.67±0.22</td>
<td></td>
</tr>
<tr>
<td>Relative Economic Efficiency</td>
<td></td>
<td>100.00±0.00</td>
<td>114.16±1.78</td>
<td>120.57±1.31</td>
<td>126.52±1.56</td>
<td>133.09±0.52</td>
<td></td>
</tr>
</tbody>
</table>

Total cost = (feed cost + price of one-day live chicks + incidental costs);
*According to the local price of Kg sold carcass which was 25.00 L.E.